军用卫星可用于多种基本用途,从跟踪军事部署和提供敌方能力图片,到全球定位系统 (GPS) 指挥部队调动和辅助导弹和无人机制导。但还有另一种同样重要的军用卫星——通信卫星 (SATCOM)。SATCOM 使军方能够在所有环境和情况下保持一致的通信,传递情报和监视信息,以便指挥官了解情况并果断采取行动。它们为机动部队提供超视距 (BLOS) 连接,传输实时战场情报。作战人员在移动和距离超过视距时经常会遇到通信困难。为了连接到国防信息系统网络 (DISN),他们传统上必须控制地形并引入电缆,这增加了作战
B. F-16 综合电子战 (EW) 套件 C. 安全视距 (SLOS) 和超视距 (BLOS) 及 3D 音频通信 D. 先进瞄准吊舱(ATP 升级和采购) E. 昼夜兼容头盔式综合瞄准 (HMIT) F. 附加高分辨率显示器 – 中央显示单元 (CDU) G. 导弹预警系统 H. 为 F-15 飞机 ALR-69A 数字通道化雷达预警接收器提供额外资金 I.使用寿命延长计划 J.天气精确瞄准能力 K. 飞行数据记录器升级 L. 资助和采购 F-16 上的 Link-16 数据链能力,包括 Block 30 型号(2016 年)
在Sweetgrass Pharmacy&Compounding的这里,我们努力应对传统的药物模型,并为您提供更个性化的可访问和可访问的医疗保健体验。我们真正花时间连接我们服务的人,以及我们的委员会,并为我们的大南卡罗来纳州社区提供了委员会。我们的药剂师团队与Provi ders and Pati and custo Mize blos,SAFE和Easy-T o-use Medicat ions,Ena bling pa tient comply comply ianc e和effi cac y合作。我们在-st矿石或手机库中提供priva te和comfo rtable。swe etgrass药房和复合效果比我的dicine更重要。我们做出了不同。com pou nding是persainalized m edi cine的力量。使其具有个人化。
许多无线电频段都受到中性大气或电离层等介质的影响,HF 频段也不例外。对于航空目的而言,重要的频段是 HF、VHF 和 UHF(卫星通信)。虽然 VHF 信号通常不受电离层效应的影响,但它被限制在视距 (LOS) 范围内。相比之下,HF 频段依赖电离层来实现其天波覆盖模式,从而实现 4 000 - 5 000 公里及以上的超视距 (BLOS) 通信范围(在多跳路径上)。SATCOM 电路受到必要的电离层穿透的影响,即地球表面上方 60 - 2 000 公里的区域,但这些影响是有害的,其中一些影响在规定条件下可能很严重(即在太阳黑子高发期间和在特定地理区域内出现闪烁)。 SATCOM 覆盖范围由视距条件决定,这可能会限制某些配置(即地球同步平台)的极地覆盖范围。通过适当的地面站定位可提供极地的 HF 覆盖范围。
首字母缩略词和缩写列表 A2AD 反介入区域拒止 AESA 有源电子扫描阵列 AFRL 空军研究实验室 AJ 抗干扰 ALE 自动链路建立 AOR 责任区 ASARS 先进合成孔径雷达系统 ASAT 反卫星 ARGOS 先进侦察地理空间轨道系统 ATR 自动目标识别 BLOS 超视距 BMC2 战斗管理指挥和控制 C4ISR 指挥、控制、通信、计算机、情报、监视和侦察 COP 通用作战图 COSS 天体瞄准系统 DCGS 分布式通用地面系统 DE 定向能 DOD 国防部 DODIN 国防部信息网络 ECCT 企业能力协作小组 EM 电磁 EWS 电子战系统 FMV 全动态视频 GPS 全球定位系统 HF 高频 I&W 指示和警告 IA 信息保障 IFDL 飞行中数据链 IMINT 图像情报 IP 互联网协议 ISR 情报、监视和侦察 JUON 联合紧急作战需求 LEO 低地球轨道 LLAN 低拦截概率、低检测概率、抗干扰网络 LO 低可观测 LOS 视距 LPD 低检测概率
战术数据链 (TDL) 作为更广泛的机载网络的一个子集,用于在战斗环境中交换信息,例如消息、数据、雷达跟踪、目标信息、平台状态、图像和命令分配。在快速变化的操作条件下操作时,TDL 为用户提供互操作性、本地和全局连接以及态势感知。TDL 提供抗干扰、安全的数字数据传输网络功能,具有新的标准化波形和数据格式,允许视距 (LOS) 和超视距 (BLOS) 飞行内和飞行间通信。所有服务战区指挥和控制 (C2) 元素、武器平台和传感器都使用 TDL。TDL 包括但不限于:Link 16、Link 11、态势感知数据链 (SADL)、可变消息格式 (VMF)、综合广播服务 (IBS)、飞行内数据链 (IFDL)、战术目标网络技术 (TTNT) 和多功能高级数据链 (MADL)。联合需求监督委员会 (JROC) 最近批准了所有低可观测平台的 MADL 波形,包括 F-22、B-2 和 F-35,并且 MADL 总体集成产品团队 (OIPT) 批准了对 MADL 开发的企业级管理和支持。
ABES 修正预算估计提交 ACU 航空电子计算机单元 AD 现役 AEF 航空航天远征军 AEW 航空航天远征联队 AFMSS 空军任务支援系统 AFRC 空军预备队司令部 AOR 责任区 AR 减员预备队 ASIP 飞机结构完整性计划 BAI 备份库存 BLOS 超视距 C2 指挥与控制 C3 指挥、控制与通信 C3I 指挥、控制、通信与信息 CALCM 常规空射巡航导弹 (AGM-86C) CAP 战斗空中巡逻 CAS 近距空中支援 CB 测试编码 (OT&E) CC 战斗编码 CDU 控制显示单元 CEM 综合效应弹药 (CBU-87) CINC 总司令 CONOPs 作战概念 CONUS 美国本土 DCA 防御性防空 DEAD 摧毁敌方防空系统 DEC 数字发动机控制 DoD 国防部DT&E 开发测试和评估 DTU 数据传输单元 EA 电子攻击 ECM 电子对抗 EHF 极高频 EP 电子防护 EI 测试编码(DT&E) FOL 前方作战位置 FSA 未来攻击机 FYDP 未来几年国防计划 FY 财政年度 GATM 全球空中交通管理系统 GMTI 地面移动目标指示器
摘要:提出了一种实时飞行模拟工具,该工具使用虚拟现实头戴式显示器 (VR-HMD),用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体而言,VR-HMD 是为在低空/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反作用。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器(也经过模拟以提供更好的态势感知)以及为提供所需飞行数据而开发的平视显示器 (HUD) 一起连接到 FGFS。在这项工作中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。我们发现,FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,文件每帧读取一次,相当于大约 0.0167 秒(60 Hz)。还进行了一项基于 NASA TLX 问卷的类似评级技术的测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,对使用桌面模拟器和 VR-HMD 的飞机控制进行了比较
ACC 空战司令部 ACM 先进巡航导弹 AEF 空中远征军 AGM 空对地弹药 AFRC 空军预备役部队 ALCM 空射巡航导弹 ANG 空军国民警卫队 AOR 责任区 ASIP 飞机结构完整性计划 BLOS 超视距 BUR 自下而上审查 C2 指挥与控制 C3 指挥、控制与通信 CALCM 常规空射巡航导弹 CAS 近距空中支援 CEM 综合效应弹药 CINC 总司令 CONOPs 作战概念 CONUS 美国本土 CUP 驾驶舱升级计划 DCA 防御性反空战 DEC 数字发动机控制器 DoD 国防部 DT&E 开发测试与评估 EA 电子攻击 EBMM 增强型轰炸机任务管理 ECM 电子对抗 ECMI 电子对抗改进 EHF 极高频 FOL 前沿作战定位 FY 财政年度 GPS 全球定位系统 IOC 初始作战能力 ISR 情报、监视、侦察 JASSM 联合空对地防区外导弹 JDAM 联合直接攻击弹药 JFACC 联合部队空中部队指挥官 JSOW 联合防区外武器 QDR 四年防御评估 LNO 有限核行动 LO 低可观测 LOS 视距 LRAP 远程空中力量评估小组 NCA 国家指挥机构 SA 态势感知
摘要:提出了一种使用虚拟现实头戴式显示器 (VR-HMD) 的实时飞行模拟工具,用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体来说,VR-HMD 是为在低/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反应。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器一起连接到 FGFS,这也被模拟以提供更好的态势感知,以及开发用于提供所需飞行数据的平视显示器 (HUD)。在本研究中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。发现 FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,每帧读取一次文件,相当于大约 0.0167 秒(60 Hz)。还根据 NASA TLX 问卷进行了类似的评级技术测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,使用桌面模拟器和 VR-HMD 工具对飞机控制进行了比较。结果表明,该系统的当前迭代非常适合在安全和沉浸式环境中训练飞行员使用类似系统。此外,这种先进的便携式系统甚至可以提高飞行员的态势感知能力,并允许他们在模拟中使用相同的数据传输程序完成相当一部分实际飞行测试。VR-HMD 飞行模拟器还旨在表达地面控制站 (GCS) 概念,并使用机载摄像机广播的真实环境实时传输飞行信息以及视点 (POV) 视觉效果。