我们提出了一种端到端深度学习模型,可以自动检测多通道脑电图 (EEG) 记录中的癫痫发作。我们的模型结合了卷积神经网络 (CNN) 和双向长短期记忆 (BLSTM) 网络,使用少量可训练参数有效地从 EEG 数据中挖掘信息。具体来说,CNN 会为原始多通道 EEG 数据的每个一秒窗口学习一个潜在编码。同时,BLSTM 会根据 CNN 编码学习癫痫发作表现的时间演变。这些架构的组合使我们的模型能够捕获指示癫痫发作活动的短时间尺度 EEG 特征以及癫痫发作表现中的长期相关性。与大多数先前的癫痫发作检测工作不同,我们通过留一患者交叉验证程序模拟住院监测环境,在所有患者中达到 0.91 的平均癫痫发作检测灵敏度。该策略验证了我们的模型可以推广到新患者。我们证明我们的 CNN-BLSTM 优于传统的特征提取方法和依赖于更大、更复杂的网络架构的最先进的深度学习方法。
摘要 — 对脑电图 (EEG) 信号进行分类有助于理解脑机接口 (BCI)。EEG 信号对于研究人类思维方式至关重要。在本文中,我们使用了由计算前信号 (BCS) 和计算期间信号 (DCS) 组成的算术计算数据集。该数据集包含 36 名参与者。为了了解大脑中神经元的功能,我们对 BCS 和 DCS 进行了分类。对于这种分类,我们提取了各种特征,例如互信息 (MI)、锁相值 (PLV) 和熵,即排列熵、谱熵、奇异值分解熵、近似熵、样本熵。这些特征的分类是使用基于 RNN 的分类器完成的,例如 LSTM、BLSTM、ConvLSTM 和 CNN-LSTM。当使用熵作为特征并使用 ConvLSTM 作为分类器时,该模型的准确率达到 99.72%。索引词 — 脑机接口、脑电图、循环神经网络、互信息、相位锁定值、熵。
最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。