A - 阿拉巴马 ( ) DB - 布雷默顿 ( ) DDYD - 圣地亚哥 ( ) D 埃塞克斯 LHD 2 CDR AJ TAYLOR E - 埃弗里特 ( ) D 波特兰 LPD 27 CAPT JW RYAN F - 彭德尔顿营 ( 0 ) D 日耳曼敦 LSD 42 CDR MJ WELGAN DG - 新加坡 ( 0 ) D O'KANE DDG 77 ^ + CDR KK McCLELLAN D FITZGERALD DDG 62 + CDR DJ CATTERALL Y 安提坦 CG 54 CAPT WD SMITH D 珍珠港 LSD 52 CDR S. KHANNA L - 波特兰 ( 0 ) E MCCAMPBELL DDG 85 + CDR S. ZIELECHOWSKI D PREBLE DDG 88 + CDR NJ CHASE Y Chancellorsville CG 62 + EA Angelinas M -Mississippi(1)D MUSTIN DDG 89 + CDR RJ BRIGGS E GRIDLEY DDG 101 + CDR ML ML BODNAR YSHILOH CG 67 ^ CAPT A. CHEATHAM A. CHEATHAM N -SAIPAN N -SAIPAN(0) GT Bryan DPO-冲绳(0)D Sterett DDG 104 + CDR CM Descovich D Spruance DDG 111 + Cdr Da Robb y Benfold Ddg 65 ^ + Cdr M. Seeger P -Pearl Harbour(9)D Stockdale DDG 106 + CDR JM BUMMARA M LENAH HS HIGBEE DDG 123 CDR D. BRAYTON Y MILIUS DDG 69 ^ + CDR M. HAYS S - SASEBO ( 9 ) P WILLIAM P LAWRENCE DDG 110 + CDR KJ SMITH Y HIGGINS DDG 76 ^ + CDR JL McGETTIGAN Y - YOKOSUKA ( ) Y HOWARD DDG 83 ^ + CDR K. IGAWA D TRIPOLI LHA 7 CAPT JC KIEFABER Y ^ - BMD 有能力 Y SHOUP DDG 86 ^ + CDR DR TOURTELOTTE D SAN DIEGO LPD 22 CAPT KW RALSTON + - AV15 有能力 Y DEWEY DDG 105 CDR NG HOFFMAN > - CNSP ADCON SHIP ( ) Y RALPH约翰逊 DDG 114 ^ + CDR C. 罗伯茨 未交付 Y 拉斐尔 佩拉尔塔 DDG 115 ^ + CDR CT 库珀 DE * - ADCON 至 NAVSEA
这是北大西洋公约组织 (NATO) 下属的北约通信和信息局 (NCI 局) 的一个职位。NCI 局的成立旨在最大程度地满足部分或所有北约国家在咨询、指挥与控制以及通信、信息和网络防御功能方面的能力交付和服务提供方面的集体需求,从而促进情报、监视、侦察、目标获取功能及其相关信息交换的整合。服务运营总监 (DSO) 负责在分配的责任区 (AOR)、静态北约总部、联盟行动和任务及演习以及受支持的组织中规划、安装、操作和维护计算机信息系统 (CIS) 服务。服务运营与应用服务、基础设施服务、AirC2 服务和 BMD 服务局密切协调交付和管理。DSO 和 CSU 获得该机构的推动者功能(一般服务、人力资源、财务和采购)的支持。DSO 是涉及将人员和设备部署到运营和演习的机构命令的签署机构,并负责维护对所有机构通信和信息系统 (CIS) 运营和服务的运营态势感知和报告。DSO 指导所有北约拥有的 CIS 设备的资产管理和后勤支持。服务运营组织包括以下组织实体:综合运营中心(Ops Centre)为 NCI 机构的 CIS 基础设施和服务提供持续监控、响应、控制和报告功能;运营和演习 SL 为正在计划和/或执行部署运营和演习的客户提供 C2 目录服务,并用于实施 SACEUR 和 NCI 机构总经理之间的 C2 安排; CSSC 为 NCI 机构服务线和客户提供工程、后勤、技术建议以及运营支持服务,包括可部署的 CIS 后勤维持能力,以支持运营和演习;并且,CSU 提供 CIS 系统的安装、操作、维护、保护、网络安全和支持,以在 AOR 内提供服务,并按照 SLA 和其他协议中的定义提供服务。NCI 机构 CIS 支持单位 (CSU) 位于诺斯伍德 (英国),与约维尔顿的 CIS 支持部门和 RAC Molesworth 一起,在其分配的责任区 (AOR) 内以及按照其他指示安装、操作、维护和支持和平时期、危机和战争期间的全方位 CIS 功能,从而实现端到端 CIS 服务。
连续变量 (CV) 类型的多模量子光学是许多量子应用的核心,包括量子通信 [1、2]、量子计量 [3] 以及通过团簇态 [5-7] 进行的量子计算 [4]。处理多模光学系统的核心步骤是识别所谓的超模 [8-10]。这些是原始模式的相干叠加,使描述系统动力学的方程对角化,并允许将多模 CV 纠缠态重写为独立压缩态的集合 [11]。超模知识对于优化对状态的非经典信息的检测[8,9,12]、在光频率梳[13-15]或多模空间系统[16]中生成和利用 CV 团簇态以及设计复杂的多模量子态[17,18]都是必需的。在实验中,由于超模在统计上是独立的,因此可以用单个零差探测器测量,从而大大减少实验开销[15]。由于其用途广泛,因此一种允许检索超模的通用策略对于多模量子光学及其应用至关重要。本理论工作的目的是提供这样一种强大而通用的工具。更具体地说,多模光量子态通常是通过二次哈密顿量描述的非线性相互作用产生的[2]。对角化系统方程的变换必须是辛变换,即遵守交换规则。标准的辛对角化方法,如 Block-Messiah 分解 (BMD) [19],适用于单程相互作用 [20-22],但不适用于基于腔的系统,因为在基于腔的系统中使用它们需要对所涉及模式的线性色散和非线性相互作用做出先验假设 [10, 23]。这种限制使传统的辛方法不适用于处理广泛的相关实验情况,包括利用三阶非线性相互作用的共振系统中的多模特征。例如,硅和氮化硅等集成量子光子学的重要平台就是这种情况 [24, 25]。在本文中,我们提供了一种广义策略,它扩展了标准辛方法,并允许在没有任何假设或限制的情况下检索任何二次哈密顿量的超模结构。我们在此考虑一个通用的阈值以下谐振系统,该系统可以呈现线性和非线性色散效应。我们的方法适用于多种场景。这些包括低维系统,例如失谐设备中的单模或双模压缩[ 26 , 27 ]或光机械腔中的单模或双模压缩[ 28 ],以及高度多模状态,例如通过硅光子学集成系统中的四波混频产生的状态[ 24 ]。最终,我们注意到,这里为共振系统开发的工具同样可以用于单程配置中的空间传播分析[16, 22]。
这是北大西洋公约组织 (NATO) 下属的北约通信和信息局 (NCIA) 的一个职位。NCI 机构成立的目的是最大限度地满足部分或所有北约国家在咨询、指挥和控制以及通信、信息和网络防御功能方面的能力交付和服务提供方面的集体需求。从而也促进了情报、监视、侦察、目标获取功能及其相关信息交换的整合。服务运营总监 (DSO) 负责在分配的责任区 (AOR)、静态北约总部、联盟行动和任务以及演习和受支持的组织中规划、安装、操作和维护通信和信息系统 (CIS) 服务。服务运营与应用服务局、AirC2 服务和弹道导弹防御 (BMD) 服务密切协调,以交付和管理。 DSO 和 CIS 支持单位 (CSU) 获得机构推动者职能(一般服务、人力资源、财务和采购)的支持。NCI 机构 CIS 支持单位 (CSU) Poggio Renatico 位于 Poggio Renatico(意大利),在分配的责任区 (AOR) 内以及按照其他指示安装、操作、维护和支持和平时期、危机和战争期间的全方位 CIS 功能,从而实现端到端 CIS 服务。服务运营部门 (SOB) 负责根据 SLA 和其他协议为直接支持本地和远程客户的 CIS 服务提供本地支持。在 NCI 机构 OPS 中心的协调下,SOB 指导、协调、监督和执行支持所有服务线所需的所有本地服务运营活动。SOB 直接或按照运营中心的指示和/或与相关服务线协调提供本地 1 级和 2 级支持。 SOB 致力于持续改进服务和流程,并向相应的服务线报告关键绩效指标。SOB 负责本地安装、操作、维护和管理指定的 IT、网络、电缆、VTC、语音和视频设备,以及所有操作系统、核心和特定应用软件。SOB 确保监控和维护物理安全,并按照 Cyber Security SL 的委托执行网络安全活动。它与本地托管总部协调实际支持。SOB 致力于问题管理、访问管理、事件管理、请求履行、发布和部署、测试和验证、配置管理和变更管理,以支持相应的服务线并与服务管理部门协调。SOB 负责为 CSU AOR 内的公司客户提供有限的支持。SOB 负责开发和持续改进配置、问题、变更和发布管理流程和程序。服务运营部门执行/参与事件管理和请求履行的 1 级支持。该部门支持根据 SLA 为本地客户提供服务;这包括端到端服务,以及主动本地事件管理、问题管理、事件管理。它还安装本地软件以支持 DAS 中的发布和部署管理,并确保满足适当的 KPI,并定期向服务线和服务管理部门报告。
这是北大西洋公约组织 (NATO) 下属的北约通信和信息局 (NCI 局) 的一个职位。为了通过连接部队来加强北约,NCI 局在需要时为北约提供安全、连贯、经济高效且可互操作的通信和信息系统,以支持咨询、指挥和控制以及实现情报、监视和侦察能力。它包括向北约总部、指挥结构和北约机构提供对北约业务流程的 IT 支持(包括提供 IT 共享服务)。服务运营主管 (CSO) 负责在分配的责任区 (AOR)、静态北约总部、联盟行动和任务和演习以及受支持的组织中规划、安装、操作和维护通信和信息系统 (CIS) 服务。服务运营与应用服务、基础设施服务、AirC2 服务和弹道导弹防御 (BMD) 服务局密切协调交付和管理。 CSO 和 CIS 支持单位 (CSU) 获得机构推动者职能(总务、人力资源、财务和采购)的支持。CIS 维持支持中心 (CSSC) 为 NCI 机构服务线和客户提供工程、后勤、技术建议,并提供运营支持服务,包括可部署的 CIS 后勤维持能力,以支持运营和演习,而 CSU 提供 CIS 系统的安装、操作、维护、保护、网络安全和支持,以在 AOR 内提供服务,并按照服务水平协议 (SLA) 和其他协议中的定义提供服务。CIS 维持支持中心位于 Brunssum(在其分配的责任区 (AOR) 内和其他情况下,在和平时期、危机和战争期间安装、操作、维护、升级、修改、翻新和支持 CIS 的全部功能)。 CIS 维持支持中心 (CSSC) 是该机构针对所有静态和可部署系统(包括部署的生命支持设备(发电机、环境气候单元和掩体))的单一集中资产管理和维修设施。该组织支持所有服务线的生命周期管理活动,并通过物流和技术设计和支持活动实现系统的可持续性。CSSC 充当所有服务线的所有静态和可部署 CIS 资产的发布和部署管理器/协调员。工程和维护部门 (EMB) 为北约可部署和静态 CIS 提供全方位的生命周期维持。它支持所有相关的北约拥有的 CIS,用于行动、演习、项目和静态安装。此类支持包括 CIS 传输系统(卫星和无线电)、网络和信息系统(所有北约核心网络基础设施)、电子设备维护和测试(测试设备、统一电磁环境效应 (UE3) 和 TEMPEST)以及 CIS 支持设备(发电和电气设备、庇护所和环境调节)。该部门还负责整个北约责任区 (AOR) 的可部署、静态和海上 CIS 及支持设备的开发、建造、安装、更换、改装、维修和翻新、维护、测试和退役。维护支持由中央 CIS 维护设施以及相关静态站点和部署 CIS 的现场提供。电子维护和测试部门 (EMTS) 负责 CIS 测试设备 (TE) 的维修、维护、验收测试和退役,支持统一电磁环境影响 (UE3) 保护计划所涵盖的屏蔽效能测试(CIS 庇护所、TEMPEST 外壳、SATCOM 站点和盟军指挥行动 (ACO) 掩体)和支持商用现货 (COTS) 数据处理设备的 TEMPEST 测试。
références1。Mizushima N,Levine B,Cuervo AM,Klionsky DJ。自噬通过细胞自我消化与疾病作斗争。自然。2008年2月28日; 451(7182):1069–75。 2。 Mizushima N,Komatsu M.自噬:细胞和组织的翻新。 单元格。 2011年11月11日; 147(4):728–41。 3。 Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。 骨骼中的自噬:保持平衡。 老化Res Rev. 2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2008年2月28日; 451(7182):1069–75。2。Mizushima N,Komatsu M.自噬:细胞和组织的翻新。单元格。2011年11月11日; 147(4):728–41。3。Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。骨骼中的自噬:保持平衡。老化Res Rev.2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2015年11月; 24(pt b):206-17。4。Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Liu F,Fang F,Yuan H等。通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。J骨矿工销售J Am Soc Bone Miner Res。2013年11月; 28(11):2414–30。5。Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Nollet M,Santucci-Darmanin S,Breuil V等。成骨细胞中的自噬参与矿化和骨稳态。自噬。2014年12月18日; 10(11):1965–77。6。Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Zhao Y,Chen G,Zhang W等。自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。J细胞生理。2012年2月; 227(2):639–48。7。DeSelm CJ,Miller BC,Zou W等。自噬蛋白调节整骨骨吸收的分泌成分。DEV单元格。2011年11月15日; 21(5):966–74。8。Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Sànchez-Riera L,Wilson N,Kamalaraj N等。骨质疏松和脆弱性骨折。最佳实践临床风湿性。9。2010年12月; 24(6):793–810。Almeida M,O'Brien CA。 骨骼老化的基本生物学:应力反应途径的作用。 J Gerontol A Biol Sci Med Sci。 2013年10月; 68(10):1197–208。 10。 Manolagas SC,Parfitt AM。 旧的对骨骼意味着什么。 趋势内分泌代替tem。 2010 Jun; 21(6):369–74。 11。 Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。 雌激素通过促进自噬来增强人类成骨细胞的存活和功能。 Biochim Biophys acta mol Cell Res。 2019年9月; 1866(9):1498–507。 12。 Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。 细胞增殖[Internet]。 2020年3月11日[引用2020年10月12日]; 53(4)。 可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。 pan F,Liu X-G,Guo Y-F等。 自助途径的调节可能会影响中国的地位变化:老年人的证据。 j hum Genet。 2010年7月; 55(7):441–7。 14。 Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Almeida M,O'Brien CA。骨骼老化的基本生物学:应力反应途径的作用。J Gerontol A Biol Sci Med Sci。2013年10月; 68(10):1197–208。10。Manolagas SC,Parfitt AM。旧的对骨骼意味着什么。趋势内分泌代替tem。2010 Jun; 21(6):369–74。11。Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。雌激素通过促进自噬来增强人类成骨细胞的存活和功能。Biochim Biophys acta mol Cell Res。2019年9月; 1866(9):1498–507。12。Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。细胞增殖[Internet]。2020年3月11日[引用2020年10月12日]; 53(4)。可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。pan F,Liu X-G,Guo Y-F等。自助途径的调节可能会影响中国的地位变化:老年人的证据。j hum Genet。2010年7月; 55(7):441–7。14。Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Zhang L,Guo Y-F,Liu Y-Z等。基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。J骨矿工销售J Am Soc Bone Miner Res。2010年7月; 25(7):1572–80。15。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。组织化学细胞生物。16。2014年9月; 142(3):285–95。Camuzard O,Santucci-Darmanin S,Breuil V等。成骨细胞谱系中的性别特异性自噬调制:抵消女性骨质流失的关键功能。oncotarget。2016年10月11日; 7(41):66416–28。17。Yang Y,Zheng X,Li B,Jiang S,Jiang L.卵巢切除大鼠中骨细胞自噬的活性增加,及其与氧化应激状态和骨骼丧失的相关性。Biochem Biophys Res Commun。2014年8月15日; 451(1):86–92。18。Luo D,Ren H,Li T,Lian K,LinD。雷帕霉素通过激活骨细胞自噬来降低老年骨质疏松症的严重程度。骨质骨int j stuph Result coop eur发现了美国的骨质骨骨骨质骨。2016年3月; 27(3):1093–101。19。yuan Y,Fang Y,Zhu L等。 造血自噬的恶化与骨质疏松症有关。 老化细胞。 2020; 19(5):E13114。 20。 Kneissel M,Luong-Nguyen N-H,Baptist M等。 依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。 骨头。 2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。yuan Y,Fang Y,Zhu L等。造血自噬的恶化与骨质疏松症有关。老化细胞。2020; 19(5):E13114。20。Kneissel M,Luong-Nguyen N-H,Baptist M等。依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。骨头。2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。2004年11月; 35(5):1144–56。21。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。内分泌学。2006年12月; 147(12):5592–9。22。Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Kim H-J,Zhao H,Kitaura H等。糖皮质激素通过破骨细胞抑制骨形成。J Clin Invest。2006年8月; 116(8):2152–60。 23。 24。2006年8月; 116(8):2152–60。23。24。Lin N-Y,Chen C-W,Kagwiria R等。 自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Lin N-Y,Chen C-W,Kagwiria R等。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Ann Rheum Dis。2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。2016; 75(6):1203–10。fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。Calcif Tissue int。2020 Jul; 107(1):60–71。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且