德国天然气供应非常安全可靠。德意志联邦共和国根据欧洲议会和欧洲理事会 2017 年 10 月 25 日颁布的关于保障天然气供应安全措施和废除第 994/2010 号条例 (EU) 2017/1938 条例第 8 条、第 10 条和附件 VII 的要求,以及在做好危机准备的背景下,制定了《天然气应急计划》。第 2017/1938 号条例 (EU) 加强了欧盟内部天然气市场,并确保在发生供应危机时欧盟成员国采取统一的做法。此外,本应急计划还包含德国根据 2022 年 8 月 5 日关于协调天然气需求减少措施的 (EU) 2022/1369 条例第 8 (2) 条实施的减少供应的自愿措施,该措施将于 2024 年 3 月 31 日到期。欧盟委员会于 2020 年 2 月 18 日就 2019 年 10 月 17 日通知的天然气应急计划提出的意见已被考虑在内。根据能源工业法 (EnWG) 第 54a (1) 条,联邦经济和气候行动部 (BMWK) 负责制定本天然气应急计划。天然气应急计划是在 Bundesnetzagentur für Elektrizität, Gas, Telekommu- nikation, Post und Eisenbahnen(联邦电力、天然气、电信、邮政和铁路网络局/BNetzA)的积极参与下制定的。根据 1938/2017 号条例 (EUI) 第 10(2)条的规定,每四年定期更新一次天然气应急计划。关于本次应急计划的更新,根据 2017/1938 号条例 (EU) 第 8(6)条的规定,咨询了所有九个直接相连或通过瑞士相连的欧盟成员国(即奥地利、比利时、捷克、丹麦、法国、意大利、卢森堡、荷兰和波兰)的主管部门,以及德国所属的八个风险组的其他 15 个成员(即保加利亚、克罗地亚、爱沙尼亚、芬兰、希腊、匈牙利、爱尔兰、拉脱维亚、立陶宛、葡萄牙、罗马尼亚、瑞典、斯洛伐克、斯洛文尼亚和西班牙)以及瑞士和英国。磋商以英文版本进行,截止日期为 2023 年 8 月 25 日星期五。在德国,紧急计划已与以下机构进行了磋商: - 联邦政府各部委,截止日期为 2023 年 7 月 28 日; - 16 个州(巴登-符腾堡州、巴伐利亚州、柏林、勃兰登堡州、不来梅州、汉堡州、黑森州、下萨克森州、梅克伦堡-前波美拉尼亚州、北莱茵-威斯特法伦州、莱茵兰-普法尔茨州、萨尔州、萨克森州、萨克森州-安哈尔特州、石勒苏益格-荷尔斯泰因州和图林根州)主管当局,截止日期为 2023 年 7 月 14 日; - 专业和行业协会,截止日期为 2023 年 7 月 14 日
扩展摘要 欧盟的目标是到 2050 年实现温室气体 (GHG) 净零经济,到 2030 年比 1990 年的水平减少 55%。目前,供暖和制冷占德国最终能源需求的 50% 以上,主要由化石燃料衍生的能源供应(BMWK,2022 年)。供热系统脱碳面临的一个挑战是供热和可持续能源供热之间的季节性不匹配。只有通过灵活管理供热网络和各种不同的存储技术,才能充分利用不稳定的可再生热能的潜力。矿井热能存储 (MTES) 系统可以提供这样一种可复制且智能的解决方案,以抵消供暖和制冷需求的季节性下降和峰值。到目前为止,在 HEATSTORE 项目框架内仅建立了一个高温 MTES 试验工厂(德国波鸿),其中成功测试了在废弃煤矿中储存热能的可能性。鲁尔大学 (RUB) 的当地区域供热网目前由两个总容量为 9 MW 的热电联产模块和三个总热输出为 105 MW 的燃气峰值锅炉运行。它们位于 RUB 的技术中心内。废弃的 Mansfeld 煤矿位于地下约 120 m 深处,位于发电厂的正下方,计划用作储热池。PUSH-IT 项目中的波鸿 MTES 演示站点将与 RUB 一起在其技术中心内建立。该项目将在夏季从峰值负荷为 700 kW 的数据中心补充余热。为了在冬季利用这些余热,废弃的 Mansfeld 煤矿将通过四口井(计划于 2024 年第三季度)开发为 MTES,进入煤矿的第一个石巷。根据预见的泵测试结果,这些井将用作生产/注入井或监测井。图 1 展示了废弃的 Mansfeld 煤矿的矿井工作面(第一层),深度约为 120 mbgl,位于“技术中心”发电厂的正下方。根据 Leonhardt(1983)假设的地热梯度,第一层的天然岩体温度应约为 11 °C。FUW 电网的发电厂位于先前开发的 HEATSTORE MTES 试点东北仅 300 米处,因此现有结果(如地质、水文地质、区域数值模型)可用于 FUW 区域供热网络的下一阶段转型。必须更加仔细地考虑前曼斯菲尔德煤矿内的 MTES 中可能的季节性余热输入和输出,同时考虑到 FUW 电网区域供热网络的框架参数。季节性热储存和区域供热网络中不同的温度水平可能会带来问题。虽然 MTES 中最高储存温度似乎可以达到 90°C,但区域供热网络采用天气补偿流动温度运行。为了能够提供所需的热量输出,流动温度从室外温度低于 8°C 时的 80°C 线性上升到室外温度为 -10°C 时的 120°C。
