3 我们可以注意到,在经典的 N 体问题(例如重力)中,一个粒子的运动方程也取决于所有其他粒子的位置。但在这种情况下,经典方程会为其他有影响的物体分配参数值。然而,Bohm 的制导方程将系统的配置视为一个整体。因此,不可能为某个特定粒子分配参数值或各个其他粒子的单独影响。
自量子理论诞生之初,研究人员就提出量子现象与心理现象之间存在很强的相似性,近几十年来,这些相似性已发展成为量子认知的一个充满活力的新领域。在回顾了尼尔斯·玻尔和戴维·玻姆的一些早期类比之后,本文重点关注了玻姆和海利对量子理论的本体论解释,该解释提出了量子现象与生物和心理现象之间的进一步类比,包括人类大脑在某些方面像量子测量仪器一样运作。在讨论这些类比之后,我还将从量子的角度考虑欣蒂卡的建议,即通过将我们的知识寻求活动与精密的测量仪器进行类比,可以更好地理解康德的物自体概念。
Mersmann,Falk; Bohm,塞巴斯蒂安;多瑞斯,特蕾莎;魏德利希,加尔各答; Arampatzis,Adamantios。个性化的伤害风险评估和基于肌腱株的处方。运动与体育科学评论53(2),2025年4月。©2025美国运动医学学院
摘要 我们证明了非相对论量子力学的公式可以从一个扩展的最小作用量原理中推导出来。这个原理可以看作是经典力学最小作用量原理的扩展,因为它考虑了两个假设。首先,普朗克常数定义了一个物理系统在其动力学过程中为可观测所需表现出的最小作用量。其次,沿经典轨迹存在恒定的真空涨落。我们引入了一种新方法来定义信息度量来测量由于真空涨落引起的额外可观测性,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够恢复位置表象中的基本量子公式,包括不确定性关系和薛定谔方程。在动量表象中,可以应用同样的方法得到自由粒子的薛定谔方程,而对于具有外部势的粒子仍需要进一步研究。此外,该原理在两个方面带来了新的结果。在概念层面,我们发现真空涨落的信息度量是玻姆量子势的起源。尽管二分系统的玻姆势不可分,但底层的真空涨落是局部的。因此,玻姆势的不可分性并不能证明两个子系统之间存在非局部因果关系。在数学层面,使用更一般的相对熵定义量化真空涨落的信息度量会得到一个取决于相对熵阶数的广义薛定谔方程。扩展的最小作用原理是一种新的数学工具。它可以应用于推导其他量子形式,例如量子标量场论。
2纠缠的历史和概念3 2.1叠加原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2纠缠。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2.1爱因斯坦·波多尔斯基·罗森(Einstein Podolsky Rosen)纸。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2.2 Bohm的概念。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2.3纠缠两个粒子。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.4超越旋转。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.5相关性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.6隐藏变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.7混合纠缠。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.8超级纠缠。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.9技术问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.3实验室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6
“爱因斯坦-波多尔斯基-罗森 (EPR) 悖论的建立导致从量子信息的角度提供依赖于观察者的量子态描述。虽然这个问题基于单粒子系统,但可以扩展到多个相同粒子系统。我们提供了实验方案来阐明对相同粒子的量子态描述。该实验方案用于三粒子阿哈罗诺夫玻姆效应。”
安志强,德克萨斯大学休斯顿健康科学中心 MICHELE A. BASSO,华盛顿大学华盛顿国家灵长类动物研究中心 RUDOLF P. BOHM,杜兰大学国家灵长类动物研究中心 KATHLEEN CONLEE,美国人道协会 HENRY T. GREELY,斯坦福大学 DIANE E. GRIFFIN,约翰霍普金斯大学 THOMAS HARTUNG,约翰霍普金斯大学动物实验替代中心 JEFFREY H. KORDOWER,亚利桑那州立大学 DOUGLAS LAUFFENBURGER,麻省理工学院 VIRGINIA M. LESSER,俄勒冈州立大学 PATRICIA E. MOLINA,路易斯安那州立大学新奥尔良健康科学中心 RICHARD NAKAMURA,美国国立卫生研究院(已退休) KYLE E. ORWIG,匹兹堡大学 SERGIU PASCA,斯坦福大学 MICHAEL LOUIS SHULER,康奈尔大学
抽象的经典交流方案利用波浪调制是我们信息时代的基础。带有光子的量子信息技术可以在解码量子计算机的黎明中实现未来的安全数据传输。在这里,我们证明也可以将重要的波应用于安全数据传输。我们的技术允许通过在二聚体干涉仪中对相干电子的量子调制传输消息。数据是在叠加状态中编码的,该滤波器通过引入分离的物质波数据包之间的纵向移动。传输接收器是延迟线检测器,对边缘模式进行动态对比分析。我们的方法依赖于aharonov – bohm效应,但不转移阶段。证明,窃听的攻击将通过干扰量子状态并引入反应性来终止数据传输。此外,我们讨论了由于多粒子方面而引起的计划的安全限制,并提出了可以防止主动窃听的关键分布协议的实现。
摘要:埃弗里特的许多世界或多元宇宙理论是试图找到标准哥本哈根量子力学解释的替代方法。埃弗里特的理论在钟声上通常被认为是本地的。在这里,我们表明事实并非如此,并通过详细分析Greenberger -Horne -Zeilinger(GHz)非局部定理来揭示矛盾。我们讨论并比较了埃弗里特文学中经常混合的地方的不同概念,并试图解释混乱的本质。我们在许多世界理论中讨论了概率和统计学,并强调,理论中分支之间存在的强对称性禁止概率定义,并且该理论无法恢复统计。这一矛盾的唯一途径是通过添加隐藏的变量来修改理论,因此,新理论是明确的,是明确的钟声。