专业上皮对于维持循环至关重要,并报告说,上皮中KEAP1的缺失将导致小鼠肾结通(Noel等,2016)。但尚不清楚什么是主要贡献者,不同细胞类型之间的协同相互作用可能对维持肾脏功能至关重要。许多基因涉及维持正常肾功能,例如CLMP和GFRA3。以前的一个在肾脏发育中起重要作用,它的缺失将导致严重的双侧肾积水(Rathjen和Jüttner,2023年)。后者是GDNF家族受体的成员,GDNF是一种分泌的分子,并参与输尿管萌芽(Uetani and Bouchard,2009年)。其他转录因子,例如gata3,lim1,对于肾脏结构也很重要(Chia等,2011)(Boualia等,2013)。小鼠胚胎中GATA3突变会在出生时引起肤色,这表明GATA3因子是尿路突变所必需的(Chia等,2011)。FOXF1是肺发育的另一个因素,也发现突变导致肾结通(BZDęGA等,2023)。通过肾积水中探索了几乎没有潜在的关键基因或转录因子,潜在的遗传机制仍在进一步研究。最近的研究表明,调节元件中染色质状态的变化在基因表达中起着至关重要的作用,并可能导致严重疾病(Mirabella等,2016)(Klemm等,2019)。尽管如此,我们仍然对肤色期间异常组织和正常组织之间染色质状态的改变的了解有限。全面理解肤色中的基因表达和相关调节网络将有助于我们识别发病机理并发现疾病的新疗法靶标。我们试图在这项研究中检测正常和肾脏症之间的差异表达基因(DEG),然后探索疾病的表观遗传变化,包括ATAC-SEQ检测到的DNA甲基化预测和相关的调节元件,检测到了差异性可及的区域(DARS)(图1A)。为了可视化Hub-Gene在肾积水中,我们还通过String构建了蛋白质 - 蛋白质网络(PPI)。为了验证获得的DEGS和DARS之间的潜在关系,我们进一步检测到DEG和DARS之间的染色质结构,试图在肾结通中填充调节机制。
二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。