BRAF突变构成了转移性结直肠癌(MCRC)中重要的预后因素,在这种情况下,治疗的发展是延长患者生存的巨大必要性。尽管BRAF突变与微卫星不稳定性(MSI)之间的关联已知已有几年了,但先前的临床试验表明,前者的预后影响有限,免疫检查点抑制剂为具有这两种特征的MCRC患者提供了显着的生存益处。此外,BRAF突变根据其分子功能的基因组性分类,使人们可以对MCRC患者的特征更了解BRAF突变的特征,其基于此分类的治疗策略使得通过靶向疗法的递送,可以更理想地改善预后不良的理想选择。最近,在先前治疗的BRAF V600E - 突变肿瘤的MCRC患者中进行了III期试验,并发现BRAF抑制和抗抗 - 表皮生长因子受体抗体疗法或没有MEK抑制的组合疗法方法比单独使用MEK抑制更为有效。本综述讨论了BRAF突破性MCRC中的当前治疗策略和未来观点。
摘要背景缺乏高质量的下一代测序(NGS)参考材料(RM)阻碍了中国液体活检的临床使用。目的本研究旨在在非小细胞肺癌(NSCLC)相关的KIT肺癌(NSCLC)肉瘤病毒癌(KRAS)/神经母细胞瘤ras Oncogene(NRAS)/epidermal brfe(egigermal raf)(egigermal raf)(egigermal raf)(e-graf)brf)(e-eg ki tipp)(e-eg ki tipp raf)(e-graf)(egigermal raf)(e-eg kin frffipp raf) 目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。方法由NGS检测到并通过Sanger测序进行验证以建立RM。细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。然后,通过四个测序平台确定校准精度。平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。然后,邀请五名制造商评估RM面板的性能。结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。所有五家公司的3%,1%和0.3%样本的检测率为100%。对于0.1%的浓度,15个样本的结果不一致,但至少有3家公司对每个突变都有正确的结果。为等离子ctDNA的KRAS / NRAS / EGFR / BRAF / MET突变面板的结论RM开发了,这对于对独立实验室的性能的质量控制至关重要。
结直肠癌(CRC)是全球癌症相关死亡率的主要原因。转移到遥远的器官,包括肝脏,肺和淋巴结,是CRC相关死亡的主要驱动力[1]。但是,患者观察到的转移模式存在明显的变化。有些人出现了涉及多个部位(多迁移疾病,PMD)的广泛转移,而另一些人则表现出较不侵略性的形式,涉及较少的地点(Oligo-Metanclancatic Disease,OMD)。OMD相对罕见,占转移性CRC病例的10%,并且具有独特且未完全了解的生物学特征[2]。OMD识别通常是回顾性的。实际上,某些患者最初对寡聚酶(通常是手术或立体定向放射疗法(SRT))进行明确的局部治疗(DLT),只是在一年内发展出侵略性PMD。相反,尽管有潜在的未来复发,但在某些情况下,患者并未经历疾病多促进性。根据Astro/Estro关节共识研究,后一组患者被归类为具有真正的(或从头)重复的转移性疾病[3]。在这项研究中,我们旨在通过为患者执行严格的选择过程,并最大程度地减少可能影响表型/基因型关联的临床混杂因素的影响,来研究OMD和PMD之间的遗传差异。患者接受治疗
结果:共纳入 12 篇出版物和 13 种治疗方法,共招募 5,803 名患者。对于任何级别的 AE,达拉非尼和曲美替尼联合治疗的可接受性均优于维莫非尼和考比替尼联合治疗(RR:0.94;Crl:0.89,0.98)。此外,与单药伊匹单抗(RR:0.90;Crl:0.83,0.96)或 nivolumab(RR:0.90;Crl:0.84,0.97)相比,nivolumab 与伊匹单抗联合治疗可增加任何级别的 AE。对于严重 AE,达拉非尼的可接受性优于单药维莫非尼(RR:0.66;Crl:0.50,0.87)或恩科拉非尼(RR:0.64;Crl:0.43,0.94)。此外,伊匹单抗(SUCRA:0.87)在任何级别 AE 的可接受性中排名第一,而纳武单抗(SUCRA:0.95)在严重 AE 的可接受性中排名第一。维莫非尼和考比替尼的组合(SUCRA:0.66)的排名优于恩科拉非尼与比尼替尼的组合(SUCRA:0.39)以及维莫非尼和考比替尼的组合(SUCRA:0.18)。
ARAF,A-RAF原始癌基因,丝氨酸/苏氨酸激酶; BRAF,V-RAF鼠类肉瘤病毒癌基因同源物B1; BRAFI,BRAF抑制剂;中枢神经系统,中枢神经系统; CRAF,原始癌基因C-RAF; DOR,响应持续时间; HGG,高级神经胶质瘤; LGG,低级神经胶质瘤; MAPK,有丝分裂原激活的蛋白激酶; Meki,MAPK激酶抑制剂; MOA,作用机理; ORR,客观响应率; RAF,快速加速的纤维肉瘤。 1。 BouchèV等。 前Oncol 2021; 11:772052; 2。 Andrews LJ等人。 Neuro Oncol 2022; 24:528–40; 3。 Kaley T等。 J Clin Oncol 2018; 36:3477–84; 4。 tafinlar。 处方信息。 诺华; 2013。 2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。 Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。 Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。ARAF,A-RAF原始癌基因,丝氨酸/苏氨酸激酶; BRAF,V-RAF鼠类肉瘤病毒癌基因同源物B1; BRAFI,BRAF抑制剂;中枢神经系统,中枢神经系统; CRAF,原始癌基因C-RAF; DOR,响应持续时间; HGG,高级神经胶质瘤; LGG,低级神经胶质瘤; MAPK,有丝分裂原激活的蛋白激酶; Meki,MAPK激酶抑制剂; MOA,作用机理; ORR,客观响应率; RAF,快速加速的纤维肉瘤。1。BouchèV等。前Oncol 2021; 11:772052; 2。Andrews LJ等人。 Neuro Oncol 2022; 24:528–40; 3。 Kaley T等。 J Clin Oncol 2018; 36:3477–84; 4。 tafinlar。 处方信息。 诺华; 2013。 2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。 Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。 Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Andrews LJ等人。Neuro Oncol 2022; 24:528–40; 3。Kaley T等。J Clin Oncol 2018; 36:3477–84; 4。tafinlar。处方信息。诺华; 2013。2023年11月6日访问。https://www.novartis.com/us-en/sites/novartis_us/files/files/tafinlar.pdf; 5。Gouda M和Subbiah V. Am Soc Clin Oncol教育书2023; 43:e404770; 6。Chen P等。 Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Chen P等。Onco Targets Ther 2017; 10:5391–403; 7。 Garutti M等。 癌症2023; 15:141; 8。 Yao Z等。 nat Med 2019; 25:284–91; 9。 Tutuka CSA等。 Mol Cancer 2017; 16:112。Onco Targets Ther 2017; 10:5391–403; 7。Garutti M等。癌症2023; 15:141; 8。Yao Z等。nat Med 2019; 25:284–91; 9。Tutuka CSA等。 Mol Cancer 2017; 16:112。Tutuka CSA等。Mol Cancer 2017; 16:112。Mol Cancer 2017; 16:112。
III 期黑色素瘤。N Engl J Med。2018;378:1789---801。16. Long GV、Hauschild A、Santinami M、Atkinson V、Mandalà M、Chiarion-Sileni V 等人。达拉非尼联合曲美替尼辅助治疗 III 期 BRAF 突变黑色素瘤。N Engl J Med。2017;377:1813---23。17. Tully KH、Cone EB、Cole AP、Sun M、Chen X、Marchese M 等人。风险
摘要 简介 原癌基因 B-Raf 抑制剂 (BRAFi) 维莫非尼与丝裂原活化蛋白激酶激酶 (MEKi) 抑制剂考比替尼联合使用,已被证明可改善 BRAF V600 突变黑色素瘤患者的生存期。BRAF 突变也是其他肿瘤类型(包括甲状腺癌)中经常检测到的驱动突变。由于甲状腺癌不是 BRAF/MEKi 的标称适应症,因此在药物重新发现方案 (DRUP) 中开设了一个针对 BRAF V600 突变甲状腺癌患者队列,这是一项正在进行的全国性泛癌症多药试验,患者根据其分子肿瘤特征接受已批准药物的标签外治疗。 结果 在这里,我们介绍了两例 BRAF 突变甲状腺癌患者,他们通过喂食管成功接受了维莫拉非尼/考比替尼治疗。测定了维莫非尼和考比替尼的血浆浓度。两名患者均观察到部分反应,但均经历了显著的毒性。结论我们的病例表明,维莫非尼/考比替尼治疗对 BRAF V600 突变甲状腺癌有效,即使通过饲管给药也是如此。虽然两名患者都出现了严重的副作用,但我们推测这不是由于给药途径造成的。因此,通过饲管给药维莫非尼/考比替尼是可行且有效的。试验注册临床试验标识:NCT02925234。
中央黑线代表基准增量成本效益比。条形图按顺序排列,最宽的条形图(可能对增量成本效益比影响最大)在顶部,最窄的条形图在底部。AE 表示不良事件;双联方案,维莫非尼加考比替尼;ICER,增量成本效益比;OS,总生存期;PFS,无进展生存期;PPS,进展后生存期;QALY,质量调整生命年;三联方案,阿替利珠单抗加维莫非尼加考比替尼。
尽管根据对信号传导回路的最新理解进行了联合靶向治疗,但 BRAF V600E 突变仍会导致转移性结直肠癌 (CRC) 预后不良。为了确定 BRAF–MEK–EGFR 共靶向诱导的平行耐药机制,我们使用了高通量激酶活性映射平台。在这里,我们表明,在靶向抑制 BRAF ± EGFR 后,SRC 激酶在 BRAF V600E CRC 中被系统地激活,并且 SRC 与 BRAF ± EGFR 的协同靶向可提高体外和体内治疗效果。SRC 通过 β-catenin (CTNNB1) 诱导转录重编程,独立于 ERK 信号传导驱动对 BRAF ± EGFR 靶向治疗的耐药性。EGFR 独立的 SRC 激酶补偿性激活由自分泌前列腺素 E 2 环介导,可以用环氧合酶-2 (COX2) 抑制剂阻断。 COX2 与 BRAF + EGFR 的共同靶向作用可促进患者来源的肿瘤异种移植模型中肿瘤生长的持久抑制。COX2 抑制代表了一种药物再利用策略,可克服 BRAF V600E CRC 的治疗耐药性。
1译本毒液集团,马德里食品高级研究所,西班牙马德里E28049; javier.moral@imdea.org 2 Hepatic再生医学小组,马德里食品高级研究所,西班牙马德里E28049; manuel.fernandez@imdea.org 3杜曼蒂纳研究所,昆士兰大学,布里斯班大学,昆士兰州,昆士兰州4072,澳大利亚4个细胞和分子生物学系,QIMR Berghofer医学研究所,澳大利亚QLD 4006,澳大利亚QLD 4006,澳大利亚QIMR疾病计划,Qimr Medical Research of Qimr Medical Researchs,Bristane Instutte,Qimr Berghhecane,QIMR Berghesutter,Qld brerestions,QMR Berghhecte; jeremy.potriquet@sciex.com(J.P。); jason.mulvenna@gmail.com(J.P.M.)6 AB Sciex,吉尔达法院2号,穆尔格雷夫,墨尔本,VIC 3170,澳大利亚7遗传学和计算生物学系,QIMR Berghofer医学研究所,澳大利亚QLD 4006,QIMR Berghofer医学研究所; pamela.mukhopadhyay@qimrberghofer.edu.au(p.m.); nic.waddell@qimrberghofer.edu.au(n.w.)8昆士兰州布里斯班分子生物科学研究所,澳大利亚昆士兰州布里斯班4072; andreas.brust@iinet.net.au(A.B.); patrickwilhelm@fastmail.com(p.w.); Richard.Clark@uq.edu.au(R.J.C.); p.alewood@imb.uq.edu.au(p.f.a.)9昆士兰州布里斯班大学生物医学科学学院,澳大利亚QLD 4072; t.smallwood@uq.edu.au 10生物科学学院,昆士兰大学,布里斯班,澳大利亚4072; bgfry@uq.edu.au 11免疫学部,QIMR Berghofer医学研究所,布里斯班,澳大利亚QLD 4006; john.miles@jcu.edu.au 12澳大利亚热带健康与医学研究所(AITHM),詹姆斯·库克大学,凯恩斯,凯恩斯,QLD 4811,澳大利亚澳大利亚13号,澳大利亚13分子治疗中心,詹姆斯·库克大学,塞恩斯,库恩斯,QLD 4811,澳大利亚澳大利亚,澳大利亚14澳大利亚生物学和分子生物学中心,曾经maria.ikonomopoulou@imdea.org†联合启示作者。