摘要:最近在参考文献中讨论了可计算的交叉规范或重组(CCNR)。[1]作为在凝结物情况下的多部分纠缠的量度。在此简短说明中,我们指出它与(2,n)-Rényi反映的熵密切相关,该熵已在ADS/CFT的背景下进行了研究。我们讨论了随机张量网络和全息CFT中CCNR的计算。全息二重奏涉及由Rényi-2 Cosmic Branes产生的几何形状中的反反应纠缠楔形截面。我们在双曲线随机张量网络中进行两个间隔的显式计算,以及2D全息CFT的真空状态,并分析连接到截止性相位过渡的发生。该示例说明了对Rényi参数的任意值n的全息图的提议的有效性。我们对此数量的对称分解的概括进行评论。
通量和电荷定量定律,用于麦克斯韦类型的较高量规场 - 例如常见的电磁场(“ A场”),以及在字符串/M理论中考虑的B-,RR-和C场 - 通过编码它们的独奏行为,并通过指定单个Branes带来的离散费用(较高的单位单位官方官)来指定这些领域的非扰动完成,从而指定其范围内的单位行为。本文通过Chern-dold角色图来调查对通量和电荷定量化的一般(理性)理论理解,该特征被推广到非线性(自我输送)Bianchi身份,这些身份在较高维度的超级性超级强度理论中出现在d = 10,d = 10,d = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10中。世界卷影。
通量和电荷定量定律,用于麦克斯韦类型的较高量规场 - 例如常见的电磁场(“ A场”),以及在字符串/M理论中考虑的B-,RR-和C场 - 通过编码它们的独奏行为,并通过指定单个Branes带来的离散费用(较高的单位单位官方官)来指定这些领域的非扰动完成,从而指定其范围内的单位行为。本文通过Chern-dold角色图来调查对通量和电荷定量化的一般(理性)理论理解,该特征被推广到非线性(自我输送)Bianchi身份,这些身份在较高维度的超级性超级强度理论中出现在d = 10,d = 10,d = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10中。世界卷影。
尽管拓扑保护对于实现可扩展量子计算机显然必不可少,但拓扑量子逻辑门的概念基础可以说仍然不稳定,无论是在物理实现方面还是在信息论性质方面。基于弦/M 理论中的缺陷膜 [SS22-Def] 以及凝聚态理论中的全息对偶任意子缺陷 [SS22-Ord] 的最新成果,我们在此解释(如 [SS22-TQC] 中所述)如何通过拓扑有序量子材料中的任意子缺陷编织来规范实际的拓扑量子门,在参数化点集拓扑中具有令人惊讶的巧妙表述,这种表述是如此基础,以至于它可以在现代同伦类型编程语言(如立方 Agda )中得到认证。
纠缠岛的后期主导地位在解决 AdS 黑洞与渐近非引力浴耦合的信息悖论中起着关键作用。一个自然的问题是如何将这一观察扩展到引力系统。为了深入了解这个问题,我们探索了当我们允许渐近浴与动态引力耦合时,这个故事在 Karch-Randall 膜世界背景下是如何修改的。我们发现,由于在定义辐射区域时无法按空间位置分离自由度,因此发射到浴中的辐射的纠缠熵是一个与时间无关的常数,这与最近在渐近平坦空间中对黑洞信息的研究一致。如果我们考虑希尔伯特空间特定部分的两个部分之间的纠缠熵,就会发现非平凡的时间依赖性,其中 Page 时间是膜角度的单调递减函数——前提是两个膜的角度都低于特定角度。然而,熵的性质不连续地依赖于这个角度,这是 AdS 空间中 AdS 膜的这种不连续行为的第一个例子。
引发的化学蒸气沉积(ICVD)代表了一种用于生产聚合物薄膜的新技术,尤其是对于很难通过召开方式处理的材料,例如polytetrafluoroethelene(ptfe,ptfe,commorly com com com com com com com necly neteflon®)。在ICVD过程中,有机前体气体在热表面上热分解以产生单体自由基。这些自由基通过启动和传播步骤聚合,以在底物表面形成所需材料。我们证明了使用ICVD技术在各种底物上创建PTFE表面,从纳米级到宏观”。我们表明,在复杂的几何形状上,涂料可以使涂料变得超薄且高度奇异,从而为从医疗设备到纺织品的应用带来了重大好处。该过程对于大面积和移动的Web底物也非常可扩展,并且由于气体利用率的高效,经济性良好。可以将其扩展到其他材料系统,包括硅酮聚合物及其共聚物,以及结合其他功能,例如环氧基团。在许多商业应用中,包括内陆,医疗设备,纺织品和消费者光学器件都有很大的部署机会。我们将详细讨论沉积过程,以及GVD的商业化计划。
森林在通过储存碳来减轻温室气和全球气候变暖方面具有重要作用。碳通过光合作用锁定在树木中,这贡献了约50%的干燥木材。因此,木材对于最大化自然的碳捕获和存储至关重要。在这个迷你审查中,概述了用于开发木材产品的新兴技术,以扩展碳存储和捕获。讨论了用于捕获CO 2的新型功能性木材基材料,包括木材和生物炭膜/吸附剂。新兴木纳米技术用于制造高性能产品,这些产品具有替代化石塑料的巨大潜力。还汇总了工程木材产品的开发技术,例如致密化,化学修饰和木材的矿化技术,目的是扩展木材碳储存。在这篇综述中研究了木本生物量对经济和碳降低的影响。这可以帮助我们对森林和木材的可持续经济管理,从而减少温室气体排放和全球气候温暖的负面影响。描述了功能性木材产品的前景以及在碳存储和捕获中开发新技术的潜力。
薄膜复合材料(TFC)膜由于可控的微结构而逐渐取代了高增值药物成分的提取,分离和浓度中的一些传统技术。然而,迫切需要设计具有高渗透率和有效分子选择性的溶剂稳定,可扩展的TFC膜,以提高分离过程中的分离效率。在这里,我们提出了一种商用酸碱指示剂苯酚胺,作为一种经济单体,用于优化选择性层的微孔结构,厚度降低至原位界面反应形成的30纳米。分子动力学模拟表明,使用三维Phe-Nolphthalein单体制备的多氧化膜膜表现出可调的微孔度和较高的孔隙互连性。此外,TFC膜显示出高甲醇的渗透率(每小时9.9±0.1升 /平方米)和有机溶剂系统中有机微污染物的小含量截止(≈289daltons)。与传统的聚酰胺膜相比,多核心膜具有更高的机械强度(2.4对0.8 gigapascals)。
摘要1,3-二吡基-8-苯基黄嘌呤的胺官能化衍生物已以tri的形式制备,作为黄嘌呤胺(pH] XAC),用作用于腺苷受体的抗吸虫辐射。[3H] XAC具有较高的受体亲和力,较高的特异性活性,较低的非特异性膜结合,并且比1,3-二乙基-8-- [3H]苯甲胺更有利的亲水性,这是一种用于腺苷受体受体结合的黄嘌呤。在大鼠脑皮质膜中,[3H] XAC表现出可饱和的特异性结合,Kd为1.23 nm和A BM。在370c时为580 FMOL/mg的蛋白质。N6-(R-苯基丙酰丙基)腺苷是[3H] XAC结合的更有效的抑制剂,而不是5'-N-乙基辅助辅助腺苷,表明结合与Al-腺苷受体有关。在没有GTP的情况下,腺苷激动剂与[3H] XAC结合的抑制曲线是双相的,表明[3H] XAC与Al受体的低亲和力激动剂结合。在GTP存在下,腺苷类似物表现出[3H] XAC的结合的单相,低亲和力抑制。抑制[茶碱或各种8-苯基黄嘌呤的3HJXAC结合是单相的,并且这些效力与这些红明因作为腺苷受体拮抗剂的效力均具有均匀的效果。小牛脑膜中的受体部位对[3H] XAC表现出较高的亲和力(KD = 0.17 nm),而豚鼠中的部位表现出较低的富裕感(KD = 3.0 nm)。[3H] XAC结合位点的密度在所有物种的脑膜中相似。