磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
本文旨在提供使用磁共振图像 (MRI) 对脑肿瘤进行分割和分类的更好方法。在本文中,小波特征是通过使用连续小波变换 (2D-CWT) 将概率密度函数 (PDF) 转换为频谱图图像而形成的,这是一种简单的特征提取方法,而特征提取方法 (PDF 和 2D-CWT) 正在提高性能。此外,为了提高分割性能,使用形态学操作分割图像并使用卷积神经网络 (CNN) 作为分类器。在 BraTS2019 数据集上,该方法的性能是根据 F1 分数和肿瘤区域分割准确度来评估的。这取得了最好的结果,准确度和 F1 分数分别为 97.37% 和 97.43%。
摘要 — 脑胶质瘤的自动分割在诊断决策、进展监测和手术计划中起着积极的作用。基于深度神经网络,先前的研究表明了有前途的脑胶质瘤分割技术。然而,这些方法缺乏强有力的策略来结合肿瘤细胞及其周围环境的背景信息,这已被证明是处理局部模糊性的基本线索。在这项工作中,我们提出了一种用于脑胶质瘤分割的新方法,称为上下文感知网络 (CANet)。CANet 使用来自卷积空间和特征交互图的上下文捕获高维和判别特征。我们进一步提出了上下文引导的注意条件随机场,它可以选择性地聚合特征。我们使用可公开访问的脑胶质瘤分割数据集 BRATS2017、BRATS2018 和 BRATS2019 来评估我们的方法。实验结果表明,在训练和验证集上,所提算法在不同分割指标下比几种最先进的方法具有更好或更具竞争力的性能。
在多模态学习中,某些模态比其他模态更有影响力,而它们的缺失会对分类/分割准确性产生重大影响。为了应对这一挑战,我们提出了一种新方法,称为元学习模态加权知识蒸馏(MetaKD),该方法可以使多模态模型即使在关键模态缺失的情况下也能保持高精度。MetaKD 通过元学习过程自适应地估计每种模态的重要性权重。这些学习到的重要性权重指导成对模态加权知识蒸馏过程,允许高重要性模态将知识迁移到低重要性模态,从而即使缺少输入也能实现稳健的性能。与该领域以前的方法通常针对特定任务且需要进行重大修改不同,我们的方法旨在以最少的调整完成多项任务(例如分割和分类)。在五个流行数据集(包括三个脑肿瘤分割数据集(BraTS2018、BraTS2019 和 BraTS2020)、阿尔茨海默病神经成像计划 (ADNI) 分类数据集和 Audiovision-MNIST 分类数据集)上的实验结果表明,所提出的模型能够大幅超越比较模型。
脑肿瘤的抽象多类分类是医学成像领域研究的重要领域。由于准确性对于分类至关重要,因此计算机视觉研究人员引入了许多技术。但是,他们仍然面临着准确性低的问题。在本文中,提出了一种新的自动化深度学习方法,以分类多类脑肿瘤。为了实现所提出的方法,Densenet201预先训练的深度学习模型进行了微调,然后使用不平衡数据学习的深度传输进行了训练。训练有素的模型的特征是从平均池层中提取的,这代表了每种类型的肿瘤的深度信息。但是,该层的特征不足以进行精确的分类。因此,提出了两种用于选择功能的技术。第一种技术是基于熵的高特征值(EKBHFV),第二种技术是基于元启发式的改良遗传算法(MGA)。GA的选定特征通过提出的新阈值旧功能进一步完善。最后,使用非冗余串行方法融合了EKBHFV和基于MGA的功能,并使用多类SVM Cubic分类器进行分类。在实验过程中,使用了两个数据集,包括BRATS2018和BRATS2019,没有增加,并且精确度超过95%。所提出的方法与其他神经网的精确比较显示了这项工作的重要性。
摘要 — 脑肿瘤是全球最致命的癌症之一,在儿童和老年人中非常常见。早期准确识别肿瘤类型和等级对于选择精准治疗方案起着重要作用。不同序列的磁共振成像 (MRI) 协议为临床医生提供了识别肿瘤区域的重要矛盾信息。然而,由于数据量大且脑肿瘤类型多样,人工评估既耗时又容易出错。因此,MRI 自动脑肿瘤诊断的需求尚未得到满足。我们观察到单模态模型的预测能力有限,其性能在不同模态之间差异很大,而常用的模态融合方法会引入潜在的噪声,导致性能显着下降。为了克服这些挑战,我们提出了一种新的跨模态引导辅助多模态学习,并采用双重注意来解决 MRI 脑肿瘤分级任务。为了平衡模型效率和功效之间的权衡,我们使用 ResNet Mix Convolution 作为特征提取的主干网络。此外,还应用双重注意分别捕获空间和切片维度中的语义相互依赖性。为了促进模态之间的信息交互,我们设计了一个跨模态引导辅助模块,其中主要模态在训练过程中引导其他次要模态,这可以有效地利用不同 MRI 模态的互补信息,同时减轻可能的噪声的影响。在 BraTS2018 和 BraTS2019 数据集上的实验结果证明了所提方法的有效性,其性能大大优于基于单模态的方法和几种最先进的多模态方法,在两个数据集上的 AUC 分别为 0.985 ± 0.019 和 0.966 ± 0.021。
