全球对高质量新鲜水果和蔬菜的需求正在迅速增加,这要归功于中产阶级的增长,城市化,可支配收入的增加以及消费者习惯的变化。全球新鲜水果和蔬菜市场的市场估计为1440亿美元,预计到2027年将增加到超过2000亿美元(Stanaway等,2022)。水果和蔬菜对于健康且均衡的饮食至关重要。它们在必需的维生素,抗氧化剂,矿物质和饮食纤维中丰富,可以帮助各种疾病和疾病(Chen等,2022)。新鲜水果和蔬菜非常易腐烂,由于收获后发生的许多因素而被宠坏。优质的鸟类和蔬菜和实现能力的收获能力受施肥,灌溉,土壤类型,种植距离以及许多其他因素的影响。在全球范围内,大量的水果(25-50%)的水果和蔬菜,而蔬菜属于harvespost-harvestlossorsorfoodloss and Waster(flw)。这种损失约占世界上生产的食物量的三分之一(Bancal和Ray,2022)。此外,农业研究和政策依赖性的主要挑战是91亿欧元,即fithsafoodbybybyby20505.asaresult,到2050年,食品生产将增加60%,以满足世界的食品供应需求(Parttt et al。,2010年)。基于FLW的全球挑战,我们组织了这个研究主题:“在收获前和收获后应用程序的进步,以减少定性和定量粮食损失和浪费”。Hassan等。该主题将增强对收获前和收获后治疗的知识和认识,这可以帮助减少新鲜水果和蔬菜的全球范围。已经测试了总共六种收获后治疗(文章),以评估其对不同作物储存能力的影响。研究不同修改的效果
量子密钥分布(QKD)[1-4]旨在使物理定律保证的安全性进行确定的通信,即使在存在具有出色计算能力的窃听器的情况下。其最常见的实现利用了用C频段光携带信息[5]或光学相[6]的C型带光携带信息的纤维光通道。即使在被动传输中,当事方之间的易于建立和维持稳定的参考[9],因此前者的自由度是有利的[7,8]。后者可以通过“ twin-field”(TF)QKD [10]实现有益的率距离缩放,并导致了近年来创纪录的距离的一系列QKD示范[11-14],克服了点对点损失通道的秘密关键能力[15]。QKD也可以通过在远处用户之间的纠缠分布来实现,并由本地测量[16,17]。除了QKD外,纠缠是其他量子信息协议的基本资源,例如量子传送[18-20]。迄今为止,在全球部署的基础设施中进行了几项QKD领域试验[21 - 28],尽管只有有限的数字表明长距离国际量子通信[29]。在这些中,仅报告了一个基于海底的通信链接[30-32],因此海底光纤维仍然代表了很大程度上未开发的情况。到目前为止,意大利和马耳他之间的海底纤维中最长的地理距离约为96 km [30,32]或192 km,在循环背包配置中[31]。在这项工作中,我们执行了一系列实验,以评估224公里海底纤维链路对量子通信协议的适用性。该链接以“岩石”为特征的链接已由公司的电缆着陆之间的Eunetworks [33]部署
在我写作时,Olga Balema的计算机(2021)正在进行中。零碎的作品印象是通过随后在2021年冬季与艺术家的访问来建立的。卡姆登艺术中心(Camden Art Center)的画廊模型 - 计算机的最终目的地 - 与我们在纽约处境相对应,就像该作品与其位置物质条件重叠的另一个地方的感觉一样。因此,这是一种逆转的练习。我看电脑,然后被运送到一个僻静的花园里,里面有一个池塘,内陆却充满活力。在蓝色的水上,黄色银杏在我的棱镜白日梦中旋转。立即混凝土和抽象,全部表面和绝对通用,视觉在空间和时间上都是无底的,我迷失在其中。2从细节的印刷品到大规模生产的地毯,这种图案化的自然替代品已经缓解了自从建筑和工业界第一次在维多利亚时代加入了Camden艺术中心周围的地区以来,自从建筑和行业第一次加入了军队。我的工作干燥,我停滞不前。一个塑料广告牌被取代吗?宣传的媒介,在习惯性的使用中,塑料挂毯是缝制的,或者以其他方式固定在金属框架或建筑物的立面上,以租用。现在,同一材料在美术馆的镶木木中水平延伸。它显示地毯的图片,但他们故意的像素化排除了感官的宽容。在工作室内外,一系列操作使曾经同质的表面感到困扰,并具有触觉品质。所有内容都是通过平衡外部元素和所涉及的编辑过程而产生的。jpegs of Prismatic DaydreamRug®与专业标志打印机共享,以散落的阵列呈现。3网格的冗余信号信号是不同寄存器的相互作用:塑料的纤维,印刷地毯的分布,它们的分布,像素。现在,工作的基本品质已内置在合成结构中,从而提供了一些有用的编辑,擦到,切割
由于金属合金重量轻、机械性能高,复合材料正在航空航天、汽车、船舶和建筑部件等多种先进应用中取代金属合金。因此,开发抗损伤和耐用的复合材料是必要的。当然,纤维基体脱粘、基体微裂纹和冲击损伤是复合材料应用中经常遇到的主要失效模式。此外,复合材料的部署和维护对机翼和尾翼等关键结构部件构成了挑战。因此,先进的材料和方法对于解决这些问题至关重要。使用复合材料的自修复技术似乎很有前景,因为它旨在修复或修复结构中的断裂和损伤起始和/或扩展。自修复复合材料可防止失效并延长关键结构的使用寿命。由于这些材料可以触发几乎自动修复,因此结构的维护可以大大简化,其中一些不需要任何外部干预即可启动修复过程。自修复复合材料能够在损坏开始时自动修复。早期的修复能力发展概念依赖于模仿树木和动物等生物体,这激发了开发自修复材料的研究。过去几十年来,人们一直在研究自修复材料和复合材料,特别是由自修复环氧树脂的发展推动(White 等人,2002 年)。自修复机制可分为两种类型,外在修复和内在修复。外在愈合基于使用愈合剂作为附加添加剂,而内在愈合涉及材料结构中的可逆分子键(超分子化学)。此外,还可以根据愈合方法进行分类,无论是自主愈合还是非自主愈合(即有或没有外部刺激)。开发自修复复合材料的一些众所周知的方法是包含微胶囊、中空纤维或含有愈合剂的血管网络(Blaiszik 等人,2008 年)。自修复也可以通过热激活,使用可逆相互作用或溶解的热塑性聚合物。形状记忆效应也已用于展示自修复特性。
右半球中风可能会损害识别自己的身体部位属于自己的自我的能力。对这种所谓的“肢体所有权感”的研究可以为人体所有者的神经认知机制提供独特的见解。在这项研究中,我们解决了基于关于健康志愿者身体所有权的实验研究的假设。这些研究表明,情感(宜人)的触摸是一种与不髓鞘的,慢速c-Tactile的传入相关的互感,在身体所有权意义上具有独特的作用。在这项研究中,我们系统地研究了情感触摸刺激是否会增加右脊椎动性肢体所有权的患者的身体所有权。对16例急性中风患者的最初可行性研究,使我们能够优化和校准床边管理的情感触摸方案。由26个右半球患者的不同样本进行的主要实验,评估了在自我(患者)与其他(实验者)产生的触觉刺激之后引起的肢体所有权变化,并使用已知的自发态度(即最佳地激活c tactile bure)(即3 cm/s),第二个速度是c-tactile激活的次优(即18 cm/s)。我们进一步研究了肢体所有权变化的特殊性和机制,以研究(i)(i)感知强度和触摸的感知强度和愉悦感的影响,(ii)触摸横向性和(iii)肢体所有权变化的肢体所有权变化和(iiv)对单方面忽视的肢体变化和(iv)的变化的水平。的发现表明,经过实验者管理的,C-Tactile-Timptimal Touch之后,肢体所有权的所有权显着增加。基于体素的病变 - 症状映射鉴定出对正确的岛群体的损害,并且更重要的是,与实验者管理的,情感的触感后,与未能增加身体所有权相关的正确call体。我们的发现表明,情感触摸可以增加右脊椎动动后的身体零件所有权的感觉,这可能是由于其在多感官一体化过程中的独特作用,这些过程涉及身体所有权的感觉。
运动过程中,长远端肌腱(如跟腱)储存和释放的弹性应变能量可增强肌肉力量并降低运动能量消耗:由于远端肌腱在回弹过程中进行机械工作,跖屈肌纤维可以在较小的长度范围内、较慢的缩短速度和较低的激活水平下工作。很少有证据表明人类进化出长远端肌腱(或保留自我们更远的人科祖先)主要是为了实现较高的肌肉 - 肌腱功率输出,事实上,与许多其他物种相比,我们的力量仍然相对较弱。相反,大多数证据表明,这种肌腱的进化是为了降低总运动能量消耗。然而,长肌腱还有许多其他优势,通常未被认识到,据推测可能具有更大的进化优势,包括由于肌肉更短更轻而减少肢体惯性(减少近端肌肉力量需求),减少足部与地面碰撞时的能量耗散,能够储存和重复使用肌肉所做的工作以减弱足部与地面碰撞引起的振动,减少肌肉产热(从而降低核心温度),以及减轻工作引起的肌肉损伤。 总的来说,这些影响应该可以减少神经运动疲劳和运动用力感,使人类可以选择以更快的速度移动更长时间。 由于这些好处在更快的运动速度下更大,因此它们与以下假设一致:我们的祖先使用的跑步步态可能对跟腱长度产生了巨大的进化压力。因此,长跟腱可能是一种独特的适应性,它提供了许多生理、生物力学和心理方面的好处,从而影响了多种任务中的行为,包括运动和运动之外的行为。虽然能量成本可能是运动研究中感兴趣的变量,但未来的研究应该考虑影响我们运动能力的更广泛的因素,包括我们决定以特定速度移动给定距离,以便更充分地了解跟腱功能的影响以及该功能在身体活动、不活动、废用和疾病对运动表现的影响。
许多商店使用的 Mastercard Pass 是著名的非接触式支付系统例子。预计这一发展将导致便携式设备(例如具有 RFID 功能的智能手机)取代现有的信用卡或支付卡,使电子货币世界更近一步。 RFID 在 UHF(超高频)频率上的开发提供了一种具有条形码所有优点但不受条形码限制的技术。事实上,电子标签可以在几米之外(2 到 5 米是完全可能的)无需直接观察就能读取,并且可以修改数据,或添加传感器(到标签)来控制温度、压力等。沃尔玛和美国国防部要求其供应商在所有货物上贴上RFID标签,促进了这项技术的传播,标准发挥了推动作用。 RFID 技术的功能范围从读取几厘米外的简单识别码到存储整个集装箱舱单,其库存可以从一百米外读取。这些可能性使得 RFID 得以突飞猛进地传播。隐私问题已基本得到解决。生产这两种产品所需的技术
在恢复禁卫军的同时,皇帝下令组建一支名为“百卫”的精锐部队,负责他的个人保护。该舰队是法国君主的各近卫军(如苏格兰卫队或瑞士百人卫队)的当之无愧的继承者,它直接隶属于皇帝的军阀,并依靠宫廷大元帅。正如其名称所示,Cent-Gardes 最初有 100 名士兵,从 1858 年起增加到 150 名,其中还增加了士官、军官、蹄铁匠和马夫。他们只有两位指挥官:第一帝国著名将军之子勒皮克上校(任职至 1855 年)和韦尔利上校(任职至 1870 年)。他们从骑兵精英中招募,必须至少有三年的资历,身高达到 1.78 米(1858 年为 1.80 米)。他们的过去必须是无可指责的:“总之,中央警卫队的一切都必须是好的,而且永远无可指责,”维利上校写道。中央卫队因其华丽的制服而闻名,在公众中享有很高的威望。他们比军队中的所有其他军团享有优先权,并且必须出席所有官方仪式。他们立即决定,百夫长团必须具有代表帝国复兴辉煌的视觉形象,因此他们制作了一套特定的服装。他们决定为他们配备与卫队胸甲骑兵非常接近的胸甲和高品质的内衣。从皇帝豪华的宫殿,到帝国沦陷的战场,百夫长将如影随形地跟随他们的君主,从辉煌到失败。他们的
蛛网膜,尤其是蜘蛛,在大多数生态系统中都充满了丰富(Blamires等,2007; Oxbrough and Ziesche,2013; Henneken et al。,2022; Agnarsson,2023; 2023; Fonseca-Fonseca-Fornesca-forreira等,2023)。蛛网膜(例如蜘蛛,蝎子和螨虫)创建和/或分泌一系列生物材料,包括丝绸,胶水,胶粘剂,粘合剂,纳米纤维,毒液和其他毒素,以及用于形成感觉系统,盔甲,身体色彩/发光和位置的感官系统,kuntememotion(Kuntner,2022),用于形成感觉系统研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年; 尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。 蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年; 遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如>研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年;尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年;遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如BLAMIRES和卖家,2019年; Craig等,2020; von Reumont等人,因此利用这一点的研究已经建立了有关蜘蛛网络和丝绸结构和功能变异性的强大背景知识(Vollrath和Porter,2006a; Kluge等,2008; Porter and Vollrath,; Porter and Vollrath,2009; Blamires,2010; Blamires et al。,2016b; Blamires; Blamires,2022222222222222222222222222.BlamIr。The genetic expression patterns for certain components of speci fi c silks have now been sequenced for selected species of spiders ( Babb et al., 2017 ; Garb et al., 2019 ; Kono et al., 2019 ), and a database of genetic and molecular structures and bulk fi bre functions for the major ampullate (dragline) silks of over 1000+ spider species has been compiled ( Arakawa et Al。,2022)。Nevertheless, such a strong body of knowledge does not exist for the other arachnid biomaterials (but see Lo ́ pez-Cabrera et al., 2020 ; Lozano-Pe ́ rez et al., 2020 , and Macha ł owski et al., 2020 for detailed reviews on cuticular structural materials, scorpion fl uorescent molecules, and mite silks).在蜘蛛丝上的积累工作意味着我们现在了解环境因素可以影响差异蛋白的遗传机制(在蜘蛛中,这些被称为蜘蛛蛋白,蜘蛛网的portmanteau)表达和生物材料产生,以及这些在表型和扩展的表型表达上的复杂复杂性。
ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 844S 844 South River Road G12 EHSB 马健康科学大楼 G10 LYLE Lyle-Porter 大厅 F9 RAWL Jerry S. Rawls 大厅 H7 停车场目录 AACC 亚裔美国人资源和文化中心 F5 ELLT Edward C. Elliott 音乐厅 G6 LYNN Charles J. Lynn 兽医学大厅 G9 REC 朗诵大楼 G7 PGG Grant Street 停车场 H7 ABE 农业和生物工程 F8 FLEX Flex 实验室 D8 MACK Guy J. Mackey 竞技场 G4 RHPH Robert E. Heine 药房大楼 G5 PGGH 研究生院停车场 H8 ADDL 动物疾病诊断实验室 F10 FORD Fred And Mary Ford 餐厅 E4 MANN Gerald D. and Edna E. Mann 大厅 E8 SC斯坦利库尔特大厅 G6 PGH 哈里森街停车场 F9 ADPA 探索公园 A 栋 Aspire D7 FORS 林业大楼 G8 MATH 数学科学大楼 G6 SCHL 海伦 B. 施勒曼学生服务大厅 G5 PGMD 麦克库琴大道停车场 C6 ADPB 探索公园 B 栋 Aspire D8 FPRD 林产品大楼 G8 ME 机械工程大楼 G6 SCHO 舒韦大厦 F1 PGNW 西北大道停车场 H5 ADM 农业创新中心 E11 FRNY Forney 化学工程大厅 G5 MJIS 马丁 C. 吉施克生物医学工程大厅 E8 SCPA 斯莱特表演艺术中心 E4 PGU 大学街停车场 F6 AERO 航空科学实验室(机库 3 号) C10 FWLR 哈里特 O. 和詹姆斯 M. 福勒 Jr. 纪念馆 E7 MMDC 材料管理与配送中心 F11 SIML Holleman-Niswonger 模拟器中心 A10 PGW 伍德街停车场 H8 AGAD 农业管理大楼 G8 GMF 场地维护设施 F11 MOLL Mollenkopf 运动中心 F3 SMLY John C. Smalley 住房和食品服务管理中心。 E6 住房目录 AHF 动物饲养设施 G10 GRIS Grissom Hall H6 MRGN Burton D. Morgan 创业中心 E8 SMTH Smith Hall F8 CARY Franklin Levering Cary Quadrangle F4 AQUA Boilermaker 水上运动中心 E6 GRS 场地服务大楼 E8 MRRT Marriott Hall F7 SOIL 土壤侵蚀实验室 E8 DUHM Ophelia Duhme 宿舍楼 E6/7 AR Armory F6 HAAS Felix Haas Hall F6 MSEE 材料与电气工程 G5 SPUR Tom Spurgeon 高尔夫训练中心 C1 ERHT Amelia Earhart 宿舍楼 D7 ARMS Neil Armstrong 工程学大楼 G4 HAMP Delon 和 Elizabeth Hampton 土木工程学大楼 G5 MTHW Matthews Hall F7 STDM Ross-Ade 体育场 F3 FSTC 中央第一街塔 D7 ASB 机场服务大楼 B11 HANS Arthur G. Hansen 生命科学研究大楼 F8 NACC 美洲原住民教育和文化中心 F5 STEW 斯图尔特中心 G7 FSTE 第一街塔,东部 D7 ASTL 动物科学教学实验室 E8 HEAV Heavilon 大厅 G6 NISW Niswonger 航空技术大楼 C10 TEL 电信大楼 F7 FSTW 第一街塔,西部 D7 BALY 拉尔夫和贝蒂贝利大厅 H6 HERL 赫里克声学 E8 NLSN Philip E.纳尔逊食品科学大厅 G8 TERM 航站楼(2 号机库) B11 GRFN 格里芬宿舍北楼 E6 BCC 黑人文化中心 F6 HGRH 园艺温室 G9 NUCL 核工程大楼 H6 TERY 奥利弗·珀金斯·特里之家 E8 GRFS 格里芬宿舍南楼 E6 BCHM 生物化学大楼 F8 HIKS 约翰·W·希克斯本科图书馆 G7 PAO 包玉刚视觉与表演艺术大厅 G8 TREC 草坪娱乐中心 D5 HLTP 山顶公寓 E2/3 BELL 钟楼 G6 HLAB 赫里克实验室 E8 PEST 农药施用者培训设施 C1 UNIV 大学大厅 G7 HARR 本杰明·哈里森宿舍 D7 BIND 宾德利生物科学中心 D8 HNLY 比尔和莎莉·汉利人类发展研究所 E7 PFEN 大卫·C·芬德勒农业大厅 G7 VA1 兽医动物隔离大楼 1 F9 HAWK George A. Hawkins 大厅 G8 BRES Drew & Brittany Bress 学生运动中心 F3 HOCK Hockmeyer 结构生物学大厅 E9 PFSB 物理设施服务大楼 F11 VA2 兽医动物隔离楼 2 F9 HCRN 荣誉学院宿舍楼北 E6 BRK Birck 纳米技术中心 D8 HORT 园艺楼 G8 PHYS 物理楼 G5 VLAB 兽医实验室动物楼 G10 HCRS 荣誉学院宿舍楼南 E6 BRNG Steven C. Beering 人文教育大厅 F7 HOVD Frederick L. Hovde 行政大厅 G5 PJIS Patty Jischke 早期护理和教育中心 C8 VMIF 兽医隔离设施 G10 HILL Hillenbrand 宿舍楼 D6 BRWN Herbert C. Brown 化学实验室 G6 HRTP 园艺公园谷仓 A6 PMU 普渡大学纪念联盟 H7 VOIN Samuel Voinoff高尔夫馆 D1 MCUT John T. Mccutcheon 宿舍 C7 CHAS Chaney-Hale 科学馆 JNSN Helen R. Johnson 护理馆 G5 PMUC 普渡纪念联盟俱乐部 H7 VPRB 兽医病理学研究大楼 F9 MRDH Virginia C. Meredith 宿舍 D/E6 CL50 1950 级演讲厅 G6 KCTR Krannert 高管教育与研究中心 H8 POAN 家禽科学附楼 F8 VPTH 兽医病理学大楼 G9 OWEN Richard Owen 宿舍 E4 COMP 复合材料实验室 C11 KFPC Kozuch 足球表演中心 F2 POTR AA Potter 工程中心 G6 WADE Walter W. Wade 公用事业厂 G10 PVIL 普渡村 C/D8/10 CREC Cordova 休闲运动中心 E5/6 KNOY Maurice G. Knoy 技术馆 H6 POUL 家禽科学大楼 E8 WALC Thomas S. 和 Harvey D. Wilmeth 主动学习中心 G6 SHLY Frances M. Shealy 宿舍 E6/7 DAUC Dick & Sandy Dauch 校友中心 H8 KRAN Krannert 管理研究生院 H7 PRCE Peirce 大厅 G6 WANG Seng Liang Wang 大厅 G5 SHRV Eleanor B. Shreve 宿舍 D6 DLR 发现和学习研究大厅 E9 KRCH Krach 领导力中心 E6 PRSV 印刷服务设施 F11 WDC Windsor 餐饮广场 E6 TARK Newton Booth Tarkington 宿舍 E4/5 DMNT Clayton W. Dement 消防站 D6 LAMB Ward L.Lambert 体育馆和体育馆 F4 PSYC 心理科学大楼 G6 WDCT Wiley Dinning Court E5 VAWT Everett B. Vawter 宿舍 E6/7 DOYL Leo Philip Doyle 实验室 G9 LCCP 普渡大学拉丁裔文化中心 F5 PUSH 普渡大学学生健康中心 F5 WEST Westwood Manor B5 WARN Martha E. 和 Eugene K. Warren 宿舍 E6/7 DRUG 药物研发中心 F8 LILY Lilly 生命科学馆 F8 PVAB 普渡村行政大楼 D9 WSLR Roy L. Whistler 农业研究馆 G8 WILY Harvey W. Wiley 宿舍 E5 EE 电气工程大楼 G5 LSA 生命科学动物大楼 F8 PVCC 普渡村社区中心 C8 WTHR Richard Benbridge Wetherill 化学实验室 G6 WOOD Elizabeth G. 和 William R. Wood 宿舍 E6/7 EEL 昆虫学环境实验室 G8 LSPS生命科学植物与土壤实验室 F8 PVP 普渡村幼儿园 C8 YONG Ernest C. Young 大厅 H8 414R 414R 公寓 F5 EHSA 马健康科学附楼 G10 LSR 生命科学靶场 F8 RAIL 美国铁路大厦 G6 LWSN Richard & Patricia Lawson 计算机科学大厦 F6 RALR Ross-ade 体育场更衣室 F4