胆囊癌 (GBC) 是一种罕见但恶性程度最高的胆道肿瘤。它通常在晚期才被诊断出来,常规治疗方法并不令人满意。作为蛋白酶体抑制剂,硼替佐米 (BTZ) 在 GBC 中表现出优异的抗肿瘤能力。然而,其长期治疗效果受到其耐药性、稳定性差和高毒性的限制。本文报道了 BTZ 封装的 pH 响应性雌酮共聚物纳米粒子 (ES-NP (BTZ; Ce6)) 用于 GBC 特异性靶向治疗。由于 GBC 中雌激素受体表达高,ES-NP (BTZ; Ce6) 可以通过 ES 介导的内吞作用迅速进入细胞并聚集在细胞核附近。在酸性肿瘤微环境 (TME) 和 808 nm 激光照射下,BTZ 被释放,Ce6 产生 ROS,从而破坏“反弹”反应通路蛋白,如 DDI2 和 p97,从而有效抑制蛋白酶体并增加细胞凋亡。与使用 BTZ 单药治疗的传统治疗相比,ES-NP (BTZ; Ce6) 可以在较低 BTZ 浓度下显著阻碍疾病进展并提高其耐药性。此外,ES-NP (BTZ; Ce6) 在患者来源的异种移植动物模型和其他五种类型的实体肿瘤细胞中表现出类似的抗肿瘤能力,揭示了其作为广谱抗肿瘤制剂的潜力。
图3。监测骨髓瘤细胞中的蛋白质折叠率错折叠。a)LEN/BTZ治疗的骨髓瘤细胞。b)LEN/BTZ处理过的骨髓瘤细胞(红线)和未处理细胞(蓝线)的差异光谱。在1620 cm -1处的条带被分配给分子间分子β-分配给错误折叠蛋白的表。c)从(b)中的光谱数据中提取的非负矩阵分解(NMF)组件。d)小提琴图显示了NMF组分的时间演化系数2。E)T分布的随机邻居嵌入(T-SNE)图,代表了在LEN/BTZ处理过的5个成分和未经处理的骨髓瘤细胞中鉴定出的5个成分的分布。f)BTZ处理过的骨髓瘤细胞(红色)的差异光谱显示在1620 cm -1时分子间β-菜单带。g)LEN处理的骨髓瘤细胞(红色)的差异光谱显示了分子间β-片带。i)阿霉素(DOX)治疗的骨髓瘤细胞(红色)的差异光谱未显示分子间β-呈带。未处理的细胞为蓝色。
基于石墨烯的2D纳米材料具有独特的物理化学特征,可以在各种生物医学应用中使用,包括化学治疗剂的运输和表现。在多形胶质母细胞瘤(GBM)中,肿瘤内施用的薄石墨烯氧化石墨烯(GO)纳米片在整个肿瘤体积中表现出广泛的分布,而不会影响肿瘤生长,也不会扩散到正常的脑组织中。这种肿瘤内定位和分布可以为GBM微环境的治疗和调节带来多种机会。在这里,描述了原位GBM小鼠模型中GO纳米片分布的动力学,并利用薄GOETEs作为平台的一种新颖的纳米纳米化学化学治疗方法,可用于非共价复杂的蛋白酶体抑制剂bortezomib(BTZ)。通过GO的表征:BTZ复合物,在体外持续的BTZ生物学活性在GO表面上的高负载能力。在体内,与两种原位GBM小鼠模型中的游离药物相比,BTZ复合物的单个小量内给予:BTZ复合物显示出增强的细胞毒性效应。这项研究提供了证据表明,薄和小的Goets通过在本地增加生物利用药物浓度而成为GBM治疗的纳米级平台的潜力,从而提高了治疗性的影响。
化学抗性的发展是多发性骨髓瘤(MM)临床管理失败的主要原因,但是相互作用以赋予这种化学抗性的遗传和表观遗传畸变仍然未知。在本研究中,我们发现高类固醇受体共激活剂3(SRC-3)表达与基于硼替佐米(BTZ)的MM患者的复发/难治性和不良结局相关。此外,在永生的细胞系中,高SRC-3增强了对蛋白酶体抑制剂(PI)诱导的凋亡的抗性。过表达的组蛋白甲基转移酶NSD2在具有T(4; 14)易位的患者中或在BTZ耐药的MM细胞中通过增强其液相 - 液相分离以超天然修饰的组蛋白H3赖氨酸36赖氨酸36二甲基化(H3K36MEE2)的模态,从而使SRC-3升高升高。使用新开发的抑制剂SI-2靶向SRC-3或其与NSD2的相互作用,使BTZ处理敏感并克服了体外和体内耐药性。总而言之,我们的发现阐明了MM获得的耐药性耐药性中先前未识别的SRC-3和NSD2编排,并表明SI-2可能会在MM患者中克服耐药性。
从而导致抗肿瘤药物浓度不足,无法抑制肿瘤细胞的生长。近年来,虽然有一些关于刺激响应性药物释放载体增加骨转移局部药物浓度的报道,13 但很少有研究解决纳米颗粒的骨靶向性和随后的骨解吸之间的难题。硼替佐米(BTZ)是FDA批准的第一个蛋白酶体抑制剂,14 它能特异性地抑制蛋白酶体26S亚基的活性,显著降低NF-kB抑制蛋白(IKB)的降解,15 IKB可以抑制核因子kB(NF-kB)的活性,从而选择性地抑制生长相关基因的表达,最终导致肿瘤细胞凋亡。 BTZ临床上一般用于治疗多发性骨髓瘤和套细胞淋巴瘤。16,17
基地活动 9 RW 指挥权交接 7 月 9 日星期二 0909 8 号码头 USDA 食品募捐会 每月的第二个和第四个星期三 0830 17800 B St.(大楼 2179) 如有疑问,请致电 530-634-3339/4400 BTZ 101 和 BTZ 模拟板信息 7 月 17 日星期三 1230 9 CS 会议室 - 6252 B St,大楼 2445,小卖部对面。访问:https://www.signupgenius.com/go/10C0949AEA92AA0F9C34-50048410-q3btzmock#/ 家庭倡导 愤怒和易怒管理技能 (AIMS) 每周三,现在 - 8 月 21 日和 9 月 25 日 - 11 月 13 日 1500-1600 诊所(家庭倡导) 完成 8 个在线模块并参加 8 次小组会议以学习和练习技能。需要注册。 POC:家庭倡导,530-634-3423 志愿者机会 萨特县博物馆志愿者 星期五,7 月 5 日 上午 9-10 点 萨特县博物馆要求军人为 4-11 岁的孩子讲故事、绘画和测试飞机。有关更多信息,请联系 M&FRC,电话:634-2863。
本指令执行空军部政策指令 (DAFPD) 36-25《军事晋升和降职》和空军指令 (AFI) 36-2502《士兵晋升和降职计划》。本指令制定了管理高级飞行员 (SrA) 区域外 (BTZ) 流程的政策和程序。本指令适用于在群山空军基地 (AB) 运营的所有单位和参谋机构。使用 DAF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给主要责任办公室 (OPR);将 DAF 表格 847 从现场通过适当的职能指挥链进行路由。确保根据本出版物中规定的流程创建的所有记录均按照 (IAW) AFI 33-322《记录管理和信息治理计划》进行维护,并按照空军记录信息管理系统 (AFRIMS) 记录处置时间表 (RDS) 进行处置。本出版物中使用任何特定制造商、商业产品、商品或服务的名称或标记并不意味着空军的认可。
本指令实施 AFPD 36-25《军事晋升和降职》,并制定适用于所有分配到拉夫林空军基地的中队的程序、政策和职责。本指令旨在解释和标准化高级飞行员 (SrA) 区域外 (BTZ) 晋升计划的处理程序。中央基地委员会 (CBB) 和大型单位将使用本指令和 AFI 36-2502《入伍飞行员晋升/降职计划》中概述的程序。使用 AF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给上面列出的 OPR;将 AF 表格 847 从现场通过适当的指挥链进行路由。本出版物中,豁免联队/部队级别要求的权限以合规声明后的层级编号(“T-0、T-1、T-2、T-3”)标识。有关与层级编号相关的权限的描述,请参阅 AFI 33-360《出版物和表格管理》表 1.1。通过指挥链向相应的层级豁免审批机构提交豁免请求,或者,向非层级合规项目的出版物 OPR 提交豁免请求。确保根据本出版物中规定的流程创建的所有记录均按照空军手册 (AFMAN) 33-363《记录管理》进行维护,并按照空军记录信息管理系统 (AFRIMS) 记录处置时间表 (RDS) 进行处置。本出版物中使用任何特定制造商、商业产品、商品或服务的名称或标记并不意味着空军的认可。
• 个人财产:634-2935 / 5191 / 2936,或发送电子邮件至:personalproperty@us.af.mil • 乘客旅行:634-2936 / 2932,或发送电子邮件至:9.LRS.pax@us.af.mil • 质量保证:634-9394 / 安装运输官员 (ITO):634-5129 2024 年美国大陆生活模式调查!即日起至 2024 年 3 月 31 日调查链接:https://www.travel.dod.mil/Allowances/CONUS-Cost-of-Living-Allowance/Living-Pattern-Survey/旨在收集有关军人及其家人的购物模式数据,以协助确定海外和美国大陆生活费用津贴 (COLA) 率。信息网站:https://www.travel.dod.mil/Allowances/CONUS-Cost-of-Living-Allowance/ 医疗准备(检查您的 IMR) 每月通过 AF 门户检查您的 IMR(个人医疗准备)并搜索 MyIMR 查看行动列表和自行安排或致电预约 PHAQ、MHA 和 DHA。 POC:David “Super Dave” Bickford,(530) 645-9196 基地活动 每月比尔空军基地 USDA 食品配送 2 月 2 日星期五 1430 Foothills Chapel 停车场 向所有 AD、退休人员、平民和家庭成员开放 第一个星期五 2 月 2 日星期五 1509 Moos and Brews 超级碗主题。穿上您最喜欢的球队球衣!户外游戏、音乐和免费披萨(送完即止)!由 9 MXG 赞助。 Recce 大学专业发展 2 月 5 日至 28 日 0800-1600 地点:Recce U,大楼 2402 访问 recceu.setmore.com 查看所有即将开设的课程。专业发展课程:BTZ 101 2 月 7 日星期三 0930 9 CS 会议室,大楼 2445,6252 B St UOD:OCP。对 E1-E3 开放 RSVP 链接:BTZ101.aspx
Baker D,Hassabis D,Jumper J(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 Blanke SR,Blanke RV(1984)。 Schotten-Baumann反应有助于对极性化合物的分析:用于测定Tris(羟甲基)氨基甲烷(THAM)的应用。 j肛门毒素8(5):231–233。 Dhina MA,Kaniawati I,Yustiana YR(2023)。 在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。 动力:物理教育杂志8(1):55–64。 Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Baker D,Hassabis D,Jumper J(2024)。诺贝尔物理学奖2024。从https://www.nobelprize.org/prizes/physics/2024/summary/检索。Blanke SR,Blanke RV(1984)。Schotten-Baumann反应有助于对极性化合物的分析:用于测定Tris(羟甲基)氨基甲烷(THAM)的应用。j肛门毒素8(5):231–233。Dhina MA,Kaniawati I,Yustiana YR(2023)。 在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。 动力:物理教育杂志8(1):55–64。 Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Dhina MA,Kaniawati I,Yustiana YR(2023)。在药房学习计划中学习基本物理学,并具有药房学生所需的系统思维技能。动力:物理教育杂志8(1):55–64。Ellman GL(1958)。 一种用于确定低浓度胃a的比色方法。 Arch Biochem Biophys 74(2):443–450。 Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。 (2021)。 设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。 Eur J Med Chem 212:113124。 Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Ellman GL(1958)。一种用于确定低浓度胃a的比色方法。Arch Biochem Biophys 74(2):443–450。Erdogan M,Kilic B,Sagkan RI,Aksakal F,Ercetin T等。(2021)。设计,合成和生物学评估是新的苯唑唑酮/苯甲噻唑酮衍生物作为针对阿尔茨海默氏病的多目标剂。Eur J Med Chem 212:113124。Gulcan Ho,Orhan IE(2021)。 具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。 Curr Top Med Chem 21(30):2752–2765。 Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Gulcan Ho,Orhan IE(2021)。具有不同杂环支架的双重单胺氧化酶和胆碱酯酶抑制剂。Curr Top Med Chem 21(30):2752–2765。Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。 苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。 Curr Med Chem 26(18):3260–3278。 Hopfield JJ,Hinton G(2024)。 诺贝尔物理学奖2024。 从https://www.nobelprize.org/prizes/physics/2024/summary/检索。 McCall RP(2007)。 物理学与药房专业的相关性。Gulcan Ho,Mavideniz A,Sahin MF,Orhan IE(2019)。苯咪唑衍生的化合物是为阿尔茨海默氏病的不同靶标而设计的。Curr Med Chem 26(18):3260–3278。Hopfield JJ,Hinton G(2024)。诺贝尔物理学奖2024。从https://www.nobelprize.org/prizes/physics/2024/summary/检索。McCall RP(2007)。物理学与药房专业的相关性。Am J Pharm Educ 71(4):第70条。pal R,Pandey P,Amjad TM(2023)。物理学在药物剂型制剂中的主导作用。Goya Journal 16(5):125–138。 Pillai JA,Cummings JL(2013)。 阿尔茨海默氏病预性阶段的临床试验。 医疗诊所,97(3),439–457。 Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。 (非)线性电荷BTZ黑洞的热波动。 int jour mod d Phys D 32(16):2350110。Goya Journal 16(5):125–138。Pillai JA,Cummings JL(2013)。 阿尔茨海默氏病预性阶段的临床试验。 医疗诊所,97(3),439–457。 Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。 (非)线性电荷BTZ黑洞的热波动。 int jour mod d Phys D 32(16):2350110。Pillai JA,Cummings JL(2013)。阿尔茨海默氏病预性阶段的临床试验。医疗诊所,97(3),439–457。Pourhassan B,Hendi SH,Upadhyay S,Sakalli I,Saridakis EN(2023)。(非)线性电荷BTZ黑洞的热波动。int jour mod d Phys D 32(16):2350110。