对于每个DiDail omni-c文库,将染色质与甲醛固定在原子核中,然后提取。用DNase I消化了固定的染色质,将染色质末端修复并连接到生物素化桥适配器,然后将含有末端的衔接子接近粘合。接近连接后,将交联后逆转并纯化了DNA。纯化的DNA以去除未结扎片段内部的生物素。使用NEBNEXT Ultra酶和Illumina兼容适配器生成测序文库。在每个文库富集之前,使用链霉亲和素珠分离含生物素的片段。库是在Illumina Hiseqx平台上测序的,以产生约30倍的序列覆盖率。然后Hirise使用MQ> 50读脚手架的读数(有关数字,请参见上面的“读取对”)。
西米棕榈(Metoxylon sagu Rottboll)是一种全能型棕榈树,它既是热带耐盐生淀粉生产棕榈树,也是观赏植物。最近,利用 Illumina 测序平台对这种棕榈树进行了基因组调查,但 BUSCO 基因组完整性非常低(21.5%),其中大多数(~78%)是碎片化或缺失的。因此,在本研究中,利用可产生更长读取量的 Nanopore 测序平台进一步提高了西米棕榈基因组的完整性。进行了混合基因组组装,结果是一个更完整的西米棕榈基因组,其中 BUSCO 完整性高达 97.9%,其中只有~2% 是碎片化或缺失的。在本研究中,西米棕榈的估计基因组大小为 509,812,790 bp。从西米棕榈基因组中共发现了 33,242 个蛋白质编码基因,其中约 96.39% 的基因已进行了功能注释。对碳水化合物代谢 KEGG 通路的研究还发现,淀粉合成是西米棕榈的主要活动之一。这些数据对于未来的分子进化和全基因组关联研究必不可少。
蛤lam挖掘在香港的历史悠久,但不受管制的蛤挖掘活动耗尽了蛤lam种群并威胁到生态系统。种群基因组学对于揭示不同地理位置上蛤的连通性并提供必要的保护措施很有用。但是,香港只有有限数量的蛤s具有基因组资源。在这里,我们使用Pacbio Hifi和Omni-C读数的组合,介绍了香港,柔韧性和Meretrix petechialis的两个蛤s的染色体水平基因组组件。对于A. flexuosa,我们将基因组组装成19个伪色体,基因组大小为1.09 GB(支架N50 = 58.5 MB),BUSCO得分为94.4%。也使用本研究中产生的转录组预测了总共20,881个基因模型。对于叶柄杆菌,基因组主要组装成19个伪色体,基因组大小为1.04 GB(支架N50 = 53.5 MB),而BUSCO得分为95.7%。也使用本研究中产生的转录组预测了总共20,084个基因模型。本研究中建立的两个新的基因组资源将有助于进一步研究蛤lam的生物学,生态学和进化,并为保护措施和实施方面的证据决策建立基础。
潮间带腹足动物Littorina saxatilis是研究物种形成和局部适应的模型系统。反复出现的不同生态型表现出不同水平的遗传差异使得萨克萨蒂利乳杆菌特别适合研究相同谱系中形成连续性的不同阶段。一个主要发现是存在与生态型差异相关的几种大染色体反转,并且该物种提供了一种系统来研究反演在这种差异中的作用的系统。萨克萨蒂利乳杆菌的基因组为1.35 GB,由17个染色体组成。该物种的第一个参考基因组是使用Illumina数据组装的,高度碎片(N50的44 kb),非常不完整,Metazoan数据集的BUSCO完整性为80.1%。一个全同胞家族的连锁图将587 MBP的基因组的放置放在17个连锁基团中,与单倍体数量相对应,但该参考基因组的分散性质限制了对divergent选择和在生态型形成过程中的相互作用的理解。在这里,我们提出了一个新生成的参考基因组,该基因组高度连续,n50为67 Mb,占总组装长度的90.4%,占17个超级折叠术。它也高度完成了BUSCO的完整性,占后生数据集的94.1%。此新参考将允许研究与生态型形成有关的基因组区域,并更好地表征反转及其在物种物种中的作用。
海绵是现存的最早的分支动物之一。因此,该组的遗传数据对于理解其他动物的各种特征和过程的EVO非常有价值。但是,像许多海洋生物一样,它们很难对它们进行顺序,因此基因组数据很少。在这里,我们从瑞典西海岸收集的一个人Geodia Barretti Bowerbank 1858年为北大西洋深海高微生物舞蹈物种Geodia Barretti Bowerbank介绍了基因组议会草案。核基因组组件具有4,535个支架,N50的48,447 bp和144 MB的总长度;线粒体基因组长17,996 bp。BUSCO完整性为71.5%。使用从头算和基于证据的方法的组合发现了31,884个蛋白质编码基因。
* 法学博士 (Nrb)、FCIArb(特许仲裁员)、OGW、LL。B (Hons) Nrb、LL.M(环境法)Nrb;文凭。法学 (KSL);FCPS (K);文凭。仲裁 (英国);MKIM;调解员;顾问:首席专家 EIA/EA NEMA;BSI ISO/IEC 27001:2005 ISMS 首席审核员/实施者;ESG 顾问;肯尼亚高等法院律师;内罗毕大学法学院教授;常设仲裁法院 (PCA) 成员 [2024 年 4 月]。1 世界环境与发展委员会,“我们共同的未来。”牛津,(牛津大学出版社,1987 年)2 Giovannoni。E.,& Fabietti。G.,“什么是可持续性?”概念及其应用的回顾。'收录于:Busco, C.、Frigo, M.、Riccaboni, A.、Quattrone, P.(编辑)综合报告。Springer, Cham。可在 https://doi.org/10.1007/978-3-319-02168-3_2 获得(访问日期:2024 年 9 月 4 日)
Chiara Albertini出生于1998年9月25日,在lodi(意大利)chiara.albertini01@universitadipavia.it遗传学,分子和细胞生物学教育博士学位| Octaber 2024-正在进行的帕维亚大学博士学位项目标题:伊迪斯蚊子蚊子的基因组可塑性博士学位主管:Lino Ometto Phd审稿人教授:计算基因组学的Michele Castelli MSC博士| 2021-2024米兰大学和政治米拉诺大学论文标题:蛋白质分歧是@Erent Lineages主管的可比较物种的代理:ChristianRödelsgerger博士生物学| 2017年 - 2021年帕维亚大学论文标题:Bactrocera Fruit IAS基因组中可转座元素的分析:Lino Ometto教授艺术高中文凭| 2012年 - 2017年艺术高中“ Callisto Piazza”,作者:Lodi研究经验研究赠款,以研究蚊子的热适应性|弗吉尼亚州 - 2024年9月 - 帕维亚大学主管:Lino Ometto教授一年一年的研究赠款,研究是否可以在埃德斯白opotus蚊子的基因组中动员下的元素,以及这种可变性是否可以导致蚊子的适应,从而避免使用蚊子。他们的侵入性。 培养蚊子的培训和维护实验室菌落| 2024年2月 - 帕维亚大学正在进行的经验,可以通过殖民地维护的所有阶段来保持埃德斯白化蚊子的实验室殖民地。Chiara Albertini出生于1998年9月25日,在lodi(意大利)chiara.albertini01@universitadipavia.it遗传学,分子和细胞生物学教育博士学位| Octaber 2024-正在进行的帕维亚大学博士学位项目标题:伊迪斯蚊子蚊子的基因组可塑性博士学位主管:Lino Ometto Phd审稿人教授:计算基因组学的Michele Castelli MSC博士| 2021-2024米兰大学和政治米拉诺大学论文标题:蛋白质分歧是@Erent Lineages主管的可比较物种的代理:ChristianRödelsgerger博士生物学| 2017年 - 2021年帕维亚大学论文标题:Bactrocera Fruit IAS基因组中可转座元素的分析:Lino Ometto教授艺术高中文凭| 2012年 - 2017年艺术高中“ Callisto Piazza”,作者:Lodi研究经验研究赠款,以研究蚊子的热适应性|弗吉尼亚州 - 2024年9月 - 帕维亚大学主管:Lino Ometto教授一年一年的研究赠款,研究是否可以在埃德斯白opotus蚊子的基因组中动员下的元素,以及这种可变性是否可以导致蚊子的适应,从而避免使用蚊子。他们的侵入性。培养蚊子的培训和维护实验室菌落| 2024年2月 - 帕维亚大学正在进行的经验,可以通过殖民地维护的所有阶段来保持埃德斯白化蚊子的实验室殖民地。硕士论文实习|麦克斯·普朗克生物学研究所,图宾根(德国)监督员的3月至2023年9月进化基因组学和生物信息学小组:克里斯蒂安·罗德尔斯伯格(ChristianRödelspergerger)博士一个6个月的研究项目,多种生物信息学工具(diamond,bast,bast,blast,blast,bust,busco,busco,busco,phhobius,phyovision in Discement in Discover in Discoy in Discement in Discement)蛋白质差异值可用于在蛋白质差异水平上研究物种对中的基因组特征。
coccomyxa属的单细胞绿藻以其全球分布和生态多功能性而被认可。迄今为止所描述的大多数物种与各种宿主物种密切相关,例如地衣关联。然而,对驱动这种共生生活方式的分子机制知之甚少。,我们为地衣coccomyxa viridis sag 216-4(相当于粘菌)生成了高质量的基因组组装。使用长阅读的PACBIO HIFI和牛津纳米孔技术与染色质构象捕获(HI-C)测序结合使用,我们将基因组组装成21个SCA效率,总长度为50.9 MB,N50的N50和2.7 MB的N50和BUSCO得分为98.6%。虽然19个sca o olds代表了全长的核染色体,但两个添加的sca o olds代表了线粒体和质体基因组。转录组引导的基因注释导致13,557个蛋白质编码基因鉴定,其中68%的PFAM结构域和962被预测被分泌。
Ascomycota构成了真菌王国中最大的门,并显示出广泛的生活方式,有些涉及植物的社会。基因组数据可用于许多对植物致病性的蛋白酶,但是无症状的植物居民的内生植物相对研究。在这里,使用短读和长阅读技术,我们对CABI培养物收集的15种内生菌菌株进行了测序和组装基因组。我们使用系统发育分析来完善分类单元的分类,这表明我们的15个基因组组件中有7个是第一个用于属和/或物种的。我们还证明,细胞量学基因组大小估计值可以作为评估组装“完整性”的有价值的度量,单独使用BUSCO时可以很容易地高估,并且对基因组组装计划具有更广泛的IM层面。在生产这些新的基因组资源时,我们强调了采矿的价值,以产生可以帮助解决与植物 - 菌件相互作用有关的主要研究问题的数据。
digitalis purpurea(foxglove)是一种广泛分布的装饰植物,也是生物医学复合地高辛的生产商。在这里,我们提出了一个长期读取测序的基于测序的基因组序列,该基因组序列和基因模型的相应预测。高组装连续性由4.3 Mbp的N50表示,并且发现约96%的完整BUSCO基因支持完整性。这种基因组资源为对D. purpurea的花色素沉着的深入研究铺平了道路。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。 红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。 此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。 此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。