用于计算超越互补金属氧化物半导体的铁电体。双极晶体管和互补金属氧化物半导体 (CMOS) 晶体管的微缩(即减小尺寸或增加总数 1 )取得了巨大成功,但随着半导体工艺的每一代发展,随着器件接近基本尺寸极限 2 ,微缩变得越来越困难。虽然摩尔微缩定律一直在延续,但工作电压的降低速度要慢得多,因为 Dennard 的微缩方案 3 只持续到 2003 年左右。研究人员目前正在探索其他方法,以继续遵循摩尔定律,使器件具有低工作电压(< 100 mV)和相应的低工作能量(每位 1-10 aJ),同时保持可接受的器件开关延迟(< 0.1 ns)。这推动了一系列替代的、超越 CMOS 的计算途径(例如,基于自旋、极化、应变等的途径)4、5 的研究。铁电体可实现非挥发性和低读/写能量,在存储器(例如铁电随机存取存储器)、逻辑或存储器内逻辑(例如铁电场效应晶体管 (FeFET) 应用 6、7 和负电容场效应晶体管)8、9 中引起了越来越多的关注。尽管引起了人们的关注,但问题在于大多数铁电器件都在高电压 6、7 (> 1 V) 下工作,因此与低功率操作不兼容 5。解决这个问题将标志着向前迈出的重要一步,并可能为铁电材料在超 CMOS 器件的出现中开辟道路。
图 2c 总结了电阻率的变化率 [Δ ρ = ( ρ 应变 − ρ 原始 )/ ρ 原始 ] 为
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要。Batio 3是钙钛矿结构的最重要功能材料之一,广泛用于电子工业中。但是,Batio 3的介电介电常数仍然相对较低,这极大地限制了其在具有巨大介电介电常数的超材料中的实际应用。在这项工作中,(Ba 100 x Sr X)(Ti 100 Y Zr Y)O 3复合陶瓷是通过实心烧结方法制造的。令人惊讶的是,(ba 100 x Sr x)(ti 100 y zr y)o 3复合陶瓷材料的介电性能分别依赖于A位置和B位置的Sr 2+和Zr 4+的占用。因此,通过调整SRTIO 3和BAZRO 3的掺杂量,介电介电常数为28287(65°C,1 kHz),以及在(ba 90 sr 10)(ba 90 sr 10)中的高分子分解强度为84.47 kV/cm,是在214%的范围内,是214%的13%and 13%,是214%的13%。 (BA 99 SR 1)(Ti 99 Zr 1)O 3复合陶瓷。此外,通过有限的元素模拟确定了介电介电常数显着增加的原因,并探索了复合陶瓷材料的分解机制。这项工作提供了一种构建高介电介电常数复合陶瓷的简便方法,即(BA 100 X SR X)(Ti 100 Y Zr Y)O 3复合陶瓷在电子和静电储能存储电容器方面具有广泛的应用前景。
a 北京邮电大学理学院信息光子学与光通信国家重点实验室,北京 100876,中国。电子邮件:bike@bupt.edu.cn b 清华大学材料科学与工程学院新型陶瓷与精细工艺国家重点实验室,北京 100084,中国。电子邮件:wxh@tsinghua.edu.cn c 哥伦比亚大学应用物理和应用数学系,纽约,NY 10027,美国。电子邮件:sb2896@columbia.edu d 布鲁克海文国家实验室凝聚态物理与材料科学系,纽约州厄普顿 11973,美国 e 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190,中国 † 提供电子补充信息(ESI)。请参阅 DOI: 10.1039/ d0tc05975g
1北京邮政与电信大学科学学院信息光子学和光学通信的关键实验室,中国北京100876。电子邮件:bike@bupt.edu.cn 2国家主要实验室新陶瓷和精细处理,材料科学与工程学院,北京大学,北京大学,北京100084,电子邮件:wxh@tsinghua.edu.edu.cn.cn 3 3 3 3 3 3应用和应用数学部门sb2896@columbia.edu 4浓缩物理和材料科学系,布鲁克黑文国家实验室,纽约州阿普顿市11973 5北京国家冷凝物质物理学实验室,物理学研究所,中国学院科学研究所,贝吉利亚学院,北京100190,中国电子补充信息(ESI)。参见doi:10.1039/x0xx00000x
这项工作表明了通过将铁电batio 3(BTO)整合为底层,半导体MOO 3作为中间层和等离激元银纳米颗粒(Ag nps)作为顶层,将有效的三元异质结构光催化剂制造为底层,半导体MOO 3。Batio 3 /Moo 3 /ag(BMA)异质结构在紫外线batio 3 /ag(BA(BA)和MAO时,在UV -Visible Light Plintination下,若丹明B(RHB)染料的光降解和光催化效率为100%,在60分钟下显示为60分钟。BMA异质结构中的光催化活性增加归因于其增强的界面电场,这是由于BTO -MOO 3和MOO 3 -ag界面的电动双层形成。对BMA异质结构观察到的表面等离子体共振(SPR)峰的较高蓝光清楚地表明,在光照明下,电子向顶部AG NPS层的转移增加了。较高的电阻开关(RS)比,电压最小值的差异增加以及改善的光电流产生,从I – V特性中可以明显看出,这说明了BMA异质结构中增强的电荷载体的产生和分离。在BMA异质结构的Nyquist图中观察到的较小的弧形半径清楚地展示了其增加的界面电荷转移(CT)。还研究了BMA异质结构的CT机制和可重复使用性。
在硅(SI)和氮化硅(SIN)基于光子整合电路(PICS)的基于硅(SI)上的薄膜(SIN)上的薄膜(PICS)的异质整合在未来未来的纳米光子薄片调制器的发展中起着至关重要的作用。由于铁电薄膜的电形(EO)特性在很大程度上取决于它们的晶体相和质地,因此在这些平台上的Batio 3薄系统的整合远非微不足道。到目前为止,已经开发了使用SRTIO 3模板结合使用SRTIO 3模板纤维与高真空沉积方法结合使用的常规集成途径,但是它的吞吐量较低,昂贵,需要单晶基板。要缩小这一差距,需要一种成本效率,高通量和可扩展的方法来集成高纹理的Batio 3薄膜。因此,提出了使用LA 2 O 2 CO 3模板膜与化学溶液沉积(CSD)过程结合使用LA 2 O 2 CO 3模板膜整合的替代方法。在这项工作中,溶液处理的BATIO 3薄片的结构和EO特性是表征的,并评估了其整合到光圈谐振器中。BATIO 3纤维表现出纹理,其大型皮孔系数(r E e镜)为139 pm v-1,并且在基于环的谐振器调制器中积分显示为1.881 V cm的V le,带宽为40 GHz。这可以使Batio 3薄膜在PIC平台上进行低成本,高通量和富裕整合,并在PIC平台上以及潜在的大规模制造纳米光子BATIO 3薄片调制器。
纸张出版日期:2024年6月15日摘要 - 机械能是一种多功能且易于使用的绿色能源,越来越多地通过创新的柔性压电纳米生成器(F-PNG)来供电小型设备。这些设备使用轻巧的材料(例如钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS)和多壁碳纳米管(MWCNTS)将机械能转换为电力。在此设计中,将BATIO3纳米颗粒嵌入了带有PDM和MWCNT的复合膜中,并夹在两个铜电极之间。为这项研究合成的Batio3/PDMS/MWCNT复合PENGS通过周期性的循环打击产生约8V的输出电压。这与没有MWCNT掺杂的PENG相比,这一增加约为16%。此外,在最佳MWCNT wt。%处的短路电流在约5.22 µA处峰值。可以通过0.1μF的储能电容器有效捕获产生的电能,然后将其用于为两个商用红色LED供电。这些发现表明,BATIO3/PDMS/MWCNT复合材料作为无铅压电纳米生成剂具有重要的希望。索引术语 - 柔性压电纳米生成器,机械能,能量收集,钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS),多壁碳纳米管(MWCNTS)。
