已经表明,肌肉细胞中能量代谢的控制受损使个体易于发展疲劳。9 L-肉碱是一种内源性氨基酸衍生物,在肌肉系统中适当控制能量代谢中具有至关重要的作用,通过将脂肪酸适当地运输到肌肉细胞中,并随后在线粒体中对其β-氧化。它还有助于消除由于线粒体中三磷酸腺苷(ATP)合成而累积的乙酰辅酶A(COA)的多余废物产物。10因此,L-肉碱似乎是线粒体适当功能的关键要素,从而有助于提供用于能源生产和抑制疲劳发展的必要ATP。这些优势得到了一些研究,这些研究表明血清肉碱缺乏症与几种神经系统和炎症性疾病中疲劳的关联。9,11
摘要 全世界的能源需求日益增加,因此在未来,将会发明更多消耗更多能源的设备,因此我们需要寻找可再生能源 [1],例如太阳能、风能和水力发电。但大部分能源来自太阳能,因为阳光一年 365 天都有,所以我们需要利用太阳能来满足我们的能源需求。在本文中,我们主要关注绿色能源 [5] 的电池管理系统,即太阳能作为电池充电的供应源。我们还必须注意太阳能的正确利用,因为在夜间,我们必须将白天的太阳能储存到电池中,并在夜间使用。因此,我们专注于电池管理,这是高效利用能源和延长电池寿命所必需的。因此,在电池管理系统中,我们专注于实时监控电池的各种参数,例如电压、温度和电流,并为电池提供过热、过载、过充和放电保护。所有这些参数都在 Thingspeak 服务器上进行监控,我们从那里获得结果。关键词:可再生能源、太阳能、电池管理系统、锂离子电池、物联网。
我们研究了宏观 PL 和 μPL(激发和检测面积 ≤ 5µm 2 )之间的差异。低温微光致发光 (μPL) 用于评估不同长度尺度上高电流密度 InGaAs/AlAs/InP 谐振隧道二极管 (RTD) 结构的结构完整性。薄且高应变的量子阱 (QW) 会受到阱和势垒厚度单层波动的影响,这会导致其能带轮廓发生随机波动。使用常见的光刻掩模减小激光光斑尺寸以达到典型的 RTD 台面尺寸(几平方微米),从而执行 μPL。我们观察到,对于 1μm 2 左右的光斑尺寸,PL 线形在晶圆上的多个点上表现出很大的差异。通过线形拟合研究了 PL 中的这些变化,并根据应变弛豫过程带来的长程无序变化进行了讨论。我们还强调这种 μPL 是一种强大且经济高效的 RTD 结构无损表征方法。
3 Biomedical Signal Processing 12 IIT Kharagpur Prof. Sudipta Mukhopadhyay 4 Industrial Automation and Control 12 IIT Kharagpur Prof. Siddhartha Mukhopadhyay 5 Cryptography & Network Security 12 IIT Kharagpur Prof. Sourav Mukhopadhyay 6 Digital IC Design 12 IIT Madras Prof. Janakiraman
a 越南胡志明市同德唐大学科技发展管理系;b 越南胡志明市同德唐大学信息技术学院;c 伊朗德黑兰伊斯兰阿扎德大学南德黑兰分校能源系机械工程学院;d 英国牛津布鲁克斯大学建筑环境学院;e 匈牙利布达佩斯奥布达大学卡尔曼坎多电气工程学院;f 德国魏玛包豪斯大学土木工程学院;g 越南岘港 550000 维新大学研究与开发研究所;h 匈牙利塞克什白堡奥布达大学阿尔巴雷吉亚技术学院;i 中国香港理工大学土木与环境工程系