电力部门在该国的经济和工业增长中起着重要作用。以合理价格以合理价格的可靠和24x7功率是国家工业增长的重要组成部分。目前为了支持印度的快速工业增长,传统和可再生能源的电力需求不断增长。传统能源的技术已经成熟,大多数设备制造商都可以本地使用。但是,对于通过可再生能源产生的电力,仍然对可再生能源设备的进口有很大的依赖。除非在适当的政策支持下增加国内能力,否则这种趋势很可能会继续。印度政府的500吉瓦州可再生能源产能增加的目标还提供了一个巨大的机会来创造熟练的就业机会,进行技术转移,并为印度的竞选活动做出了贡献,此外还减少了该国的贸易赤字和依赖进口的贸易。考虑到上述内容,MNRE和MOP已共同启动了一项计划,以建立制造区域,以使用Power&Renewable Energy设备建立制造区域。目标是建立基于尖端,清洁和节能技术的制造设施,以最大程度地限制对设备/关键组件/关键备件的依赖等。 div> div>鉴于上述权力部已获得政府的批准。 Madhya Pradesh的Mohasa Babai工业区MPIDC,M.P.鉴于上述权力部已获得政府的批准。Madhya Pradesh的Mohasa Babai工业区MPIDC,M.P.电力部门和可再生能源设备所需的;促进“在印度和'Atmanirbhar Bharat'制造,并使印度成为电力和可再生设备制造领域的全球领导者;通过国内制造目前正在进口的物品来促进本土化;通过提供无忧的土地和许可分配,CTF和CIF的状态可显着降低制造成本,从而使国内行业具有竞争力和自力更生,从而促进该国的独家制造区建立独家制造区;并利用由于资源和规模经济的优化而产生的收益。此EOI发表在M.P. Narmadapuram区Mohasa Babai工业区的Mohasa Babai工业区的制造区投资进行投资进行投资和可再生能源设备。2.0关于制造区
电力部门在该国的经济和工业增长中起着重要作用。以合理价格以合理价格的可靠和24x7功率是国家工业增长的重要组成部分。目前为了支持印度的快速工业增长,传统和可再生能源的电力需求不断增长。传统能源的技术已经成熟,大多数设备制造商都可以本地使用。但是,对于通过可再生能源产生的电力,仍然对可再生能源设备的进口有很大的依赖。除非在适当的政策支持下增加国内能力,否则这种趋势很可能会继续。印度政府的500吉瓦州可再生能源产能增加的目标还提供了一个巨大的机会来创造熟练的就业机会,进行技术转移,并为印度的竞选活动做出了贡献,此外还减少了该国的贸易赤字和依赖进口的贸易。考虑到上述内容,MNRE和MOP已共同启动了一项计划,以建立制造区域,以使用Power&Renewable Energy设备建立制造区域。目标是建立基于尖端,清洁和节能技术的制造设施,以最大程度地限制对设备/关键组件/关键备件的依赖等。 div> div>鉴于上述权力部已获得政府的批准。 Madhya Pradesh的Mohasa Babai工业区MPIDC,M.P.鉴于上述权力部已获得政府的批准。Madhya Pradesh的Mohasa Babai工业区MPIDC,M.P.电力部门和可再生能源设备所需的;促进“在印度和'Atmanirbhar bharat'制造,并使印度成为电力和可再生设备制造领域的全球领导者;通过国内制造目前正在进口的项目来促进本土化;促进建立该国的独家制造区域;通过使其在国内竞争和清除竞争和清除现象,以使其在国内供应,以使其竞争和清除局面,以使CIF和CIF的竞争范围和CIF竞争,自我制造的功率和可再生能源设备;此EOI发表在M.P. Narmadapuram区Mohasa Babai工业区的Mohasa Babai工业区的制造区投资进行投资进行投资和可再生能源设备。2.0关于制造区
所有已知例子都表明经典模拟算法与量子绝热量子计算(StoqAQC)之间存在指数分离,这些例子都利用了将绝热动力学限制在有效对称子空间的对称性。对称性产生较大的有效特征值间隙,从而使得绝热计算高效。我们提出了一种经典算法,从任何 k 局部量子汉密尔顿量 H 的有效子空间中进行亚指数采样,而无需先验了解其对称性(或近似对称性)。我们的算法将任何 k 局部汉密尔顿量映射到图 G = ( V, E ),且 | V | = O (poly( n )),其中 n 是量子比特的数量。鉴于 Babai [ 1 ] 的著名结果,我们利用图同构来研究 G 的自同构,并得出 | V | 中的算法准多项式。用于从 H 的有效子空间本征态中生成样本。我们的结果排除了 StoqAQC 与经典计算之间的指数分离,这种分离是由 k -局部汉密尔顿函数中的隐藏对称性引起的。我们对 H 的图形表示不限于 stoquatic 汉密尔顿函数,并且可以排除非 stoquatic 情况下的相应障碍,或者有助于研究 k -局部汉密尔顿函数的其他属性。
EM42 Advanced Manufacturing Branch *********************************************************** The Advanced Manufacturing Branch, EM42, has two teams: the Additive Manufacturing and Digital Solutions Team (AMDST) and the Advanced Composites Manufacturing Team (ACMT).AMDST提供了整个产品生命周期的各种功能和服务。该团队的主要功能是增材制造,数字制造,结构化的轻扫描,制造执行系统以及支持硬件开发和制造的各种其他数字工具。ACMT使用可用于私人行业的最先进方法提供了高级复合材料结构的开发。这包括:纤维放置,胶带铺设,丝状缠绕,压缩成型,树脂输液,真空包装手袋上篮,烤箱固化和高压灭菌器固化。该团队还提供其他不同的功能和服务,包括用于辐射屏蔽和火箭喷嘴的材料开发,以及提供高压灭绝,步入式冷却器和冷冻机。这些团队能够提供工程解决方案,制造开发以及最复杂的大小和形状的全尺寸硬件生产。团队经验从测试和飞行文章到使用现场设备的制造增强和材料开发。现有的资源和设施已用于许多NASA,私营企业以及其他政府机构的计划,项目和任务。随着协作工作的扩大和能力,该组织设备齐全,并具有合适的人员组合和专业知识,以有效地响应当今负担得起的制造要求的需求。EM42高级制造分支机构联系人Majid Babai先生,分支部长Majid.K.Babai@nasa.gov,256–544–2795 Steven Burlingame先生
Fotios Petropoulos 1, *,Daniele Apiletti 2,Vassilios Assimakopoulos 3,Mohamed Zied Babai 4,Devon K. Barrow 5,Souhaib Ben Taieb 6,Christoph Bergmeir 7,Ricardo Bergmeir 7,Ricardo J. Bessa 8,9 14,Michael P. Clements 15,Clara Cordeiro 16,17,Fernando Luiz Cyrino Oliveira 18,Shari de Baets 19,Alexander Dokmumentov 20,Jone Pipson,Philip 29 Hans Franses 22,David T. Frazier 23 A GUIDOLIN 26,Massimo Guidolin 28,Ulrich Gujia Gujia 2019 26,Nigel Harvey 31,David F. Hendry 32,Ross Hollyman 1,Tim Januschowski 33,Jooyoung Joyoung Joon 34,Victor Richord R. Jose R. Jose 35,Yanfei Kang 36,Yanfei Kang 36,Yanfei Kang 36 1,Konstantia Litsiou 42,Spyros Makridakis 43,Gael M. Martin 23,Andrew B. Martinez 44,45,Sheik Meeran 1,Theodore Modis 46,Konstantinos Nikolopoulos 47 Pedio 53,54,Diego J. Pedregal 55,Pierre Pinson 56,PatríciaRamos57,David E. Rapach 58,Tahrea Rea,James Rosta,60 Talagala 65,Len Tashman 66,Dimitrios Thomako 67,Thorat Thorazi 68 IS 69、70,JuanMónTraperoArenas 55,Xiaoqian Wang 36,Robert L. Winkler 71,Alisa Yusa Yusapova 10,Florian Ziel 72,Florian Ziel 72
ZJQCMQRYFPFPTBANNEREND与NIST讨论后,通过利用https://eprint.iacr.org/2023/290中所述的技术来修改关键配对生成实现方法,并在HAWK方案中使用了hawk的其他范围(hawk wasts in hawk wastpps in。签名)。在简而言之,猎鹰钥匙对生成过程使用以下内容: - 两个多项式F和G是用以零为零的固定高斯分布生成的。如果向量(F,G)具有太大的标准,则该过程重新开始。- 满足NTRU方程(FG -GF = Q)的多项式F和G(使用Babai的Found -Off算法)计算并减少。- 如果找不到合适的F和G,则过程重新开始。可以轻松验证解决方案以实现方程式,因此没有接受“错误”(F,G)的风险。通常,对于给定的(f,g),可以减少几种(F,G)的解决方案,并且“不像其他任何”。最初的Falcon提案在还原过程中使用浮点操作,从而引发了各种硬件平台的某些实现问题,并且略微损害了测试矢量可重复性,因为不同的平台可能会采用不同的舍入并落入不同的(F,G)解决方案。鹰队中使用的实现仅使用整数计算,从而更容易在许多软件平台上重现。它也更快,使用较少的RAM。拒绝率小于29%(Falcon-512约8.2%,Falcon-1024为28.5%),因此对安全性的影响不得比log_2(1-0.29)位更糟,即因此,它可以拒绝某些(F,g)对数学上存在的(F,G)解决方案的(F,G)对,但没有通过实现而发现,从而导致新(F,G)对的再生。从理论上讲,我们可能会在最坏的0.49位安全性左右输掉。没有被拒绝的密钥对闻名,但即使有,它
Fotios Petropoulos 1, ∗ , Daniele Apiletti 2 , Vassilios Assimakopoulos 3 , Mohamed Zied Babai 4 , Devon K. Barrow 5 , Souhaib Ben Taieb 6 , Christoph Bergmeir 7 , Ricardo J. Bessa 8 , Jakubro Bijak 10 , Jelan Jelan Broywell 10 . , Claudio Carnevale 12 , Jennifer L. Castle 13 , Pasquale Cirillo 14 , Michael P. Clements 15 , Clara Cordeiro 16,17 , Fernando Luiz Cyrino Oliveira 18 , Shari De Baets 19 , Alexander Dokumentov 20 , Joan Piot Piot , Philip 29 ses 22 , David T. Frazier 23 , Michael Gilliland 24 , M. Sinan G¨on¨ul 25 , Paul Goodwin 1 , Luigi Grossi 26 , Yael Grushka-Cockayne 27 , Mariangela Guidolin 26 , Massimo Guidolin 28 , Ulrich Guojio 2003 26 , Nigel Harvey 31 , David F. Hendry 32 , Ross Hollyman 1 , Tim Januschowski 33 , Jooyoung Jeon 34 , Victor Richmond R. Jose 35 , Yanfei Kang 36 , Anne B. Koehler 37 , Stephan Kolassa , Nikolas , 139 va 40 , Feng Li 41 , Konstantia Litsiou 42 , Spyros Makridakis 43 , Gael M. Martin 23 , Andrew B. Martinez 44,45 , Sheik Meeran 1 , Theodore Modis 46 , Konstantinos Nikolopoulos 47 , Dilek ¨ ¨ ¨ ¨ Pastagnios , 489 , Pastagnios agiotelis 50 , Ioannis Panapakidis 51 , Jose M. Pav ́ıa 52 , Manuela Pedio 53,54 , Diego J. Pedregal 55 , Pierre Pinson 56 , Patr ´ıcia Ramos 57 , David E. Rapach 58 , J. Reade 59 , James Romi-Bahr baszek 61 , Georgios Sermpinis 62 , Han Lin Shang 63 , Evangelos Spiliotis 3 , Aris A. Syntetos 60 , Priyanga Dilini Talagala 64 , Thiyanga S. Talagala 65 , Len Tashman 66 , Dimitrios Thomakos 67 , Thorin Thorin 68 9.70, Juan Ram´on Trapero Arenas 55, Xiaoqian Wang 36, Robert L. Winkler 71, Alisa Yusupova 10, Florian Ziel 72
Babai天生就可以接受训练,她的大脑随着使用而发展。具有各种课程的刺激和关怀环境为孩子提供了许多玩耍,改进和学习的机会,以及许多练习他们学到的东西的机会。关系:儿童在儿童之间关系发展的基础会影响其发展的所有领域和阶段。实际上,养育关系是健康孩子的基础。温暖,敏感的关系为您的孩子提供了有关他自己和他的世界的必要信息。例如,您的孩子得知他被爱和安全。他们还了解哭泣,笑或提出问题时会发生什么。您的孩子还学会了与他人建立关系 - 例如,观看您如何对待其他家人或朋友。本课程是发展沟通,行为,行为和其他技能的基础。您的孩子与您的关系是他一生中最重要的关系之一。与其他家庭成员,护理人员,幼儿和其他孩子的关系对于您的孩子的成长也非常重要。接起来:就像早期开发和学习儿童健康与医学解剖学和生理学\ Xe2 \ x80 \ x98Development \ xe2 \ x80 \ x99是指儿童物理gropports \ xe2 \ XE2 \ x80 \ x80 \ x99的变化。您孩子的社交,情感,行为,思维和沟通技巧也发生了变化。所有这些发展领域都是相互关联的,并且相互依赖。例如,您的孩子得知他或她被爱和安全。在生命的头五年中,积极的经历和热情,负责任的关系刺激了儿童,并在大脑中建立了数百万个联系。实际上,儿童大脑在头五年中的联系比他们一生的任何时候都要快。这是形成学习,健康和行为的基础的时候。婴儿天生就可以学习,并且随着时间的流逝,他们的大脑继续发展。具有各种活动的刺激性,关怀的环境为儿童提供了许多玩耍,发展和学习的机会,以及许多机会练习影响其发展的各个领域和阶段的关系。实际上,培养关系是健康儿童发展的基础。通过一种热情,负责任的关系,您的孩子学习了有关自己和世界的重要信息。您还将了解他们哭泣,笑或提出问题时会发生什么。您的孩子还通过观察其他人之间的关系来学习,例如您如何对待其他家庭成员或朋友。此学习是发展孩子的沟通,行为,社交和其他技能的基础。与其他家庭成员,看护者,教育者和其他孩子的关系并与您互动有助于您的孩子学习重要的生活技能。这些技能包括沟通,反思,解决问题,移动和与其他人和儿童的互动。
Fotios Petropoulos 1 , * , Daniele Apiletti 2 , Vassilios Assimakopoulos 3 , Mohamed Zied Babai 4 , Devon K. Barrow 5 , Souhaib Ben Taieb 6 , Christoph Bergmeir 7 , Ricardo J. Bessa , Jakub John 89 , Ejak Ejak Boylan 。 10 , Jethro Browell 11 , Claudio Carnevale 12 , Jennifer L. Castle 13 , Pasquale Cirillo 14 , Michael P. Clements 15 , Clara Cordeiro 16 , 17 , Fernando Luiz Cyrino Oliveira 18 , Shari De Baets 19 , Alexander Dokumento , Jovnemento 20埃里森 9 , 皮奥特·菲泽德 21 , 菲利普·汉斯·弗朗西斯 22 , 大卫·T·弗雷泽 23 , 迈克尔·吉利兰 24 , M. Sinan Gönül 25 , 保罗·古德温 1 , 路易吉·格罗西 26 , 雅埃尔·格鲁什卡-科凯恩 27 , Mariangela Guidolin 26 , 马西莫·吉洛·乌尔里希冈特 29 , 郭晓佳 30 , 雷纳托·古塞奥 26 , 奈杰尔·哈维 31 , 大卫·F·亨德利 32 , 罗斯·霍利曼 1 , 蒂姆·贾努肖夫斯基 33 , Jooyoung Jeon 34 , 维克多·里士满·R·何塞 35 , 扬·康菲 36 , 安妮·B. , Stephan Kolassa 38 , 10 , Nikolaos Kourentzes 39 , 10 , Sonia Leva 40 , Feng Li 41 , Konstantia Litsiou 42 , Spyros Makridakis 43 , Gael M. Martin 23 , Andrew B. Martinez 44 , 44 , Sheik Meodore , Modis 465 ,康斯坦丁诺斯·尼科洛普洛斯 47 , 迪莱克·恩卡尔 25 , 阿莱西亚·帕卡尼尼 48 , 49 , 阿纳斯塔西奥斯·帕纳吉奥泰利斯 50 , 扬尼斯·帕纳帕基迪斯 51 , 何塞·M·帕维亚 52 , 曼努埃拉·佩迪奥 53 , 54 , 迭戈·J·佩德雷 55 , 皮埃尔·平森 , 56帕特里夏·拉莫斯 57 、大卫·E·拉帕奇 58 、J·詹姆斯·里德 59 、巴曼·罗斯塔米-塔巴尔 60 、米哈乌·鲁巴斯泽克 61 、乔吉奥斯·塞尔皮尼斯 62 、韩林尚 63 、伊万杰洛斯·斯皮利奥蒂斯 3 、阿里斯·A·辛特 60 、塔拉·普里扬 64 、塔拉加普里阳Thiyanga S. Talagala 65 , Len Tashman 66 , Dimitrios Thomakos 67 , Thordis Thorarinsdottir 68 , Ezio Todini 69 , 70 , Juan Ramón Trapero Arenas 55 , 王晓倩 36 , Robert L. Winkler 71 , Alisa Yusuva , Florian Yusuva 10 10 72