摘要:属于芽孢杆菌属的物种会产生许多有利的细胞外临界,这些细胞外象征在商业规模上具有巨大的应用,用于纺织品,洗涤剂,饲料,食品和饮料行业。这项研究旨在与当地环境分离出有效的热耐淀粉和纤维素细菌。使用盒子 - 贝恩肯的设计响应表面方法论,我们进一步优化了淀粉酶和纤维素酶活性。通过16S rRNA基因测序将分离株鉴定为枯草芽孢杆菌Qy4。这项研究利用马铃薯果皮废料(PPW)作为生物材料,在开放环境中过度倾倒。干燥PPW的营养状况是通过近距离分析确定的。在250 ml erlenmeyer量中进行了所有实验运行,该量含有酸处理的PPW作为底物,由耐热的枯草脂肪酸盐Qy4在37°C下孵育72 h,在浸没发酵中孵育72 h。结果表明,与酸治疗相比,稀释的H 2 SO稀释辅助高压灭菌治疗有利于产生更多的淀粉酶(0.601 IU/mL/min),而在稀酸治疗中观察到高纤维素酶的产生(1.269 IU/mL/min),并且在稀酸治疗中观察到,并且与酸辅助治疗相比非常有效。确定的P值,F值和系数证明了模型的重要意义。这些结果表明,PPW可以可持续地用于生产酶,这些酶在各种工业阵列中,尤其是在生物燃料生产中。
微生物学是涉及细菌,酵母和其他真菌,藻类,原生动物和病毒的生物学分支。这些微生物本质上是普遍存在的,并且在农业,生物技术,生态学,医学和兽医科学等领域中起着至关重要的作用。微生物学领域有助于基本探究区域,例如生物化学,细胞生物学,进化,遗传学,分子生物学,发病机理和生理学。对微生物的同时遗传和生化分析的轻松和力量导致了分子生物学和分子遗传学的新学科的出现,并产生了新的生物技术产业。
越来越多的研究报告说,细菌DNA甲基化具有重要的功能,超出了其在限制性修饰系统中的作用,包括影响临床相关的表型,例如毒力,宿主定殖,孢子孢子,生物膜形成等。尽管有洞察力,但此类研究在很大程度上具有临时的性质,并且将从系统的策略中受益,从而实现微生物学界对细菌甲基瘤的联合功能表征。在这种意见中,我们建议高度保守的DNA甲基转移酶(MTases)代表了细菌表观基因组学研究的独特机会。这些MTases在细菌中很常见,跨越各种分类法,并且存在于多种人类病原体中。除了具有良好特征的核心DNA MTase,例如来自Vibrio Cholera,Salmonella Enterica,梭状芽胞杆菌艰难梭菌或化脓性链球菌的核心MTase,在许多人类病原体中也发现了多个高度保守的DNA MTase,其中包括属于Burkholderia属的人和阿科氏菌。我们讨论了为什么以及如何优先考虑这些MTase,以使社区范围内的综合方法进行功能基氏症研究。最终,我们讨论了一些高度保守的DNA MTases如何成为开发新型表观遗传抑制剂以用于生物医学应用的有希望的靶标。
抽象的内膜膜是一种毁灭性的感染,可能引起失明。超过一半的芽孢杆菌内膜病例导致有用视力的显着丧失。芽孢杆菌产生许多毒力因子,可能导致视网膜损伤和稳健的炎症。我们在这种疾病的背景下分析了免疫抑制剂A(INHA)金属抑制,假设INHA有助于眼内毒力和炎症。我们分析了野生型(WT),INHA1-抑制剂(D INHA1),INHA2-偏高(D INHA2)或INHA1,A2,A2和A3偏见的表型和感染率(D Inha2)和A3 deenigent(d inha1-3)芽孢杆菌芽孢杆菌。比较了对生长,蛋白水解和细胞毒性的体外分析。WT和INHA突变体类似地对视网膜细胞具有细胞毒性。d inha1和d inha2突变体比苏云金氏菌早于木相相生长。D Inha1-3突变体的蛋白水解降低,但这种菌株在体外的生长与WT相似。 通过静脉内感染了C57BL/6J小鼠,具有200 cfu的WT B.苏云金或INHA突变体,从而启动了实验性内膜。 分析眼睛的眼内芽孢杆菌和髓过氧化物酶浓度,恢复功能丧失和组织学变化。 在整个感染过程中,感染了DINHA1或D INHA2突变菌株的眼睛含有比感染WT的眼睛的细菌数量更多的眼睛。 被单个突变体感染的眼睛具有炎症和视网膜功能损失,类似于感染WT菌株的眼睛。 感染了D inha1-3突变体的眼睛清除了感染。蛋白水解降低,但这种菌株在体外的生长与WT相似。通过静脉内感染了C57BL/6J小鼠,具有200 cfu的WT B.苏云金或INHA突变体,从而启动了实验性内膜。分析眼睛的眼内芽孢杆菌和髓过氧化物酶浓度,恢复功能丧失和组织学变化。在整个感染过程中,感染了DINHA1或D INHA2突变菌株的眼睛含有比感染WT的眼睛的细菌数量更多的眼睛。被单个突变体感染的眼睛具有炎症和视网膜功能损失,类似于感染WT菌株的眼睛。感染了D inha1-3突变体的眼睛清除了感染。定量实时PCR(QRT-PCR)结果表明,单个INHA突变体中其他INHA可能存在补偿性表达。这些结果表明,INHA金属蛋白酶有助于感染的严重程度和芽孢杆菌内po虫的炎症。
摘要:二甲双胍是全球规定的抗糖尿病药物之一,也被认为是其他治疗应用,包括癌症和内分泌疾病。它在很大程度上是由人类酶及其在环境中的存在无代谢的,这引起了人们的关注,据报道,对水生生物的有毒作用以及对人类的潜在影响。我们报告了菌株MD1的分离和表征,菌株MD1是一种用二甲双胍生长为唯一的碳,氮和能源的有氧甲基营养细菌。菌株MD1将二甲双胍降解为用于生长的二甲基胺,而鸟苷脲作为副产品。对其完全组装的基因组的序列分析表明其对氨基杆菌的影响。差异蛋白质组学和转录组学,以及菌株的微型转poson诱变,指向二甲双胍生长必不可少的基因和蛋白质,并可能与二甲双胍的水解C-N裂解有关,或与二甲甲甲酸和七一个甘表示的细胞转运有关。获得的结果表明,菌株MD1降解二甲双胍的生长支持能力的最新演变。我们的结果确定了菌株MD1中二甲双胍转化的酶系统的候选蛋白质,并将为未来关于二甲双胍及其降解产物在环境和人类中的降解产物的命运提供信息。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
噬菌体(噬菌体)构成了地球上最丰富和遗传多样的实体。细菌与估计全球总数10³为病毒体的相互作用显着塑造了人类健康和环境生态系统(1)。噬菌体与其细菌宿主之间的生态相互作用的规模驱动了一种遗传武器种族,从而不断改变分子水平的微生物寿命(2)。在大型时间尺度上快速发展而产生的多样性为人类健康创新(例如噬菌体疗法)提供了基础,以及生物技术创新的基础,例如群集定期散布的短期短滴定重复序列(CRISPR)和CRISPR与CRISPPR相关(CAS)蛋白质系统(3-5)。然而,具有巨大的遗传多样性是伟大的未知数 - 对绝大多数噬菌体中的基因含量已知。与细菌对应物相比,噬菌体基因组编码具有已知或预测功能的基因的小部分,这构成了生物圈中最大的遗传暗物质(未知功能基因)之一(6)。尽管有可能使用经典的遗传技术将一些暗物质带到光线下,但仍需要更高的实验方法来简化和加快噬菌体基因组的遗传遗传含量的表征和加快表征。
广告系列成功。据估计,在典型的美国饮食中,精制的植物油现在最多可以赋予1/3卡路里!它们不仅在人造黄油中 - 它们无处不在,糖果,蛋白质和能量棒,烘焙食品,炸食品,披萨,炸玉米饼和玉米饼,中国外卖,薯条,薯条,椒盐脆饼,更玉米饼,蛋黄酱,蛋黄酱,微波爆米花,蛋糕糖霜以及免费的奶酪,奶酪,奶油,奶油和奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油奶油和奶油;他们的最新化身是在“基于植物的”肉类替代品中,例如不可能的汉堡。营养支持饮料,例如Boost,并确保为工业种子油的木马马匹。
缩写= audimax | BI = Bienroder Weg | PK = Pockelsstr。| RR =藤环| sn = schleinitzstr。| MM =方法模块| PM =强制模块| WPM =强制性选修模块| ü=运动| vl =讲座