摘要:傅立叶变换红外光谱(FTIRS)是一种历史上用于微生物领域的诊断技术,用于与其脂质,蛋白质和多糖成分的特定组成相关的细菌菌株的表征。对于每个细菌菌株,可以获得一个独特的吸收光谱,该光谱代表基于外细胞膜的成分获得的指纹。在这项研究中,首次将FTIRS作为一种实验性诊断工具,用于歧视两种属于蜡状芽孢杆菌群,炭疽芽孢杆菌和蜡状芽孢杆菌Sensu stricto的致病物种。这是两个密切相关的物种,使用经典的微生物方法不容易区分,代表动物健康领域的创新技术。
众所周知,发酵食品中的微生物含有代谢产物,可能改善人类和动物的健康。然而,尽管对发酵食品的功能作用进行了一些研究,但有效芽孢杆菌菌株的分离和鉴定仍在进行中。本研究的目的是从分子上鉴定发酵食品来源中产生生物膜的芽孢杆菌属 (BPB) 和酵母,并研究它们与 Lysinibacillus louembei 菌株的相互作用。共获得 133 个芽孢杆菌分离株以及 32 个酵母分离株,以进行详细鉴定和研究。根据使用 fibE 聚合酶链式反应 (PCR) 多重和 ITS-PCR 技术的表型和分子表征,芽孢杆菌属的种类被鉴定为短小芽孢杆菌 (12%)、枯草芽孢杆菌 (12%)、萨法芽孢杆菌 (6%)、解淀粉芽孢杆菌 (6%)、地衣芽孢杆菌 (6%) 和酿酒酵母 (0.05%)。使用多重 PCR 扩增了枯草芽孢杆菌、地衣芽孢杆菌和短小芽孢杆菌中参与生物膜形成过程的 yfi Q、eps H、ymc A 和 tas A 基因,并对其进行了鉴定和确认。作为表型结果,使用刚果红琼脂法 (CRA) 鉴定了 45% 的 BPB 分离株。使用乳化指数 (EI24) 测试了芽孢杆菌和酵母生产生物表面活性剂的能力。65% 和 69% 的芽孢杆菌和酵母分离株能够乳化汽油。56% 的芽孢杆菌分离株生物表面活性剂粗提取物对大肠杆菌、金黄色葡萄球菌和沙门氏菌表现出抗菌活性。在芽孢杆菌属、酿酒酵母和 L. louembei 之间进行了培养。结果,在酵母菌株 V3 与 B. pumilus 菌株 VB15 以及 L. louembei 与解淀粉芽孢杆菌中获得了类共生相互作用,在酿酒酵母菌株 P3 和芽孢杆菌属中获得了类竞争相互作用。菌株 VP11,以及与 B. pumilus 和 S. cerevisiae 以及芽孢杆菌属菌株 VP34 和 S. cerevisiae 菌株 P1 的类反式相互作用。这些结果表明,微生物在发酵过程中保持着不同的关系。关键词:芽孢杆菌、酿酒酵母、Lysinibacillus louembei、发酵食品、微生物相互作用、生物表面活性剂、生物膜。引言微生物对各种食品的发酵是最古老的食品生物保存形式之一(Diaz-
短链脂肪酸(链长最多为6个碳原子的单羧酸)是肠Bacte RIA对未消化的多糖发酵的副产品。在这些化合物中,乙酸盐,丙酸和丁酸酯在胃肠道中占主导地位,占总数的95%以上,其中构成了甲酸盐,脱脂,粘胶和其他组成剩余部分。13醋酸酯和丙酸酯主要由菌叶植物的代表产生,而富菌的细菌(包括芽孢杆菌和乳酸杆菌的呈现)是Butyrate 14的主要来源,是丁酸酯14的主要来源。15过量脂肪和糖消耗不足,而西方饮食中的典型摄入量则破坏了均衡的公司/细菌植物比率。这伴随着肠道障碍的渗透性,这有助于炎症和免疫疾病的发展。16短链脂肪酸的量也随着使用广谱抗生素的使用而导致的肠道营养不良的发展减少。17
基于植物生长促进细菌的固体和液体制剂枯草芽孢杆菌BS006被设计为蔬菜苗圃生产的生物接种剂。考虑到从生产过程到土壤应用的微生物生存的重要性,在20、30和40°C的十二个月内评估了每个配方中的孢子生存力(CFU)。在评估的三个温度水平下,固体和液体配方的生存率分别高于85和90%。将细菌生物学活性评估为苗圃中的生菜,西兰花和番茄的植物生长促进。在播种和播种后21天,以三个浓度(1x10 7,5x10 7,1x10 8 cfu/ml)施加制剂。根和空中长度和干重是评估响应变量。观察到了积极的效果,特别是在1x10 8孢子/ml的液体配方中,显示了根和空中部位的最长长度,并且根和叶面部分中的干重值最高。关于内生芽孢杆菌,枯草芽孢杆菌定植的根,茎和叶,达到8x10 2至1x10 5 cfu/g之间的浓度。
磷(P)是植物生长的关键营养素,但其摄取通常受到土壤因子和金属氧化物(例如铝(Al),铁),铁(Fe)和钙(CA)等土壤因子的阻碍,它们结合P并限制其可用性。磷酸盐溶解细菌(PSB)具有将不溶性P转换为可溶性形式的独特能力,从而促进了植物的生长。这项研究旨在评估巨型B芽孢杆菌B119(根际)和枯草芽孢杆菌B2084(内生芽孢杆菌)通过种子处理增强玉米产量,谷物P含量和酶活性的疗效。此外,我们研究了促进植物生长促进,与商业接种剂的兼容性以及这些菌株的玉米根粘附谱的各种机制。在巴西的两个实验区域,Sete Lagoas-MG和SantoantônioDeGoiás-Go中,在三个季节中实施了单次接种B119或B2084,而两种菌株的共同接种。除了控制外,所有治疗方法都根据情节建议接受P肥料。两种芽孢杆菌菌株均表现出与P动态相关的植物生长促进特性,包括磷酸盐溶解和矿化,产生吲哚 - 3-乙酸(IAA)类似分子,辅助分子,辅助物,外多糖(epos)(eps),eps),生物纤维和磷酸盐酶,以及无抗体和磷脂的含量。菌株B2084与B119相比显示出优质的玉米根粘附。在现场试验中,单次接种B119或B2084导致玉米谷物产量增加,Sete Lagoas的相对平均生产率分别为22%和16%,SantoAntônioDegoiás分别为6%和3%。与非接种对照相比,Sete Lagoas的共同接种更有效,Sete Lagoas的平均产量增加了24%,而SantoantônioDegoiás的平均产量增加了11%。在所有季节中,累积的谷物P含量与产量相关,而在圣托尼奥尼奥·德·戈伊斯(SantoAntôniodegoiás)共同接种后,根际的土壤P含量增加。这些发现补充了先前的研究工作,并导致了对玉米芽孢杆菌菌株配制的第一个巴西接种剂的验证和注册,从而有效地增强了P粒含量。
南美和东亚继续对结核病接种疫苗,而其他国家仅依靠仅对高风险群体的靶向疫苗接种(5-7)。 超过30年; BCG材料在尿道切除术(TUR)(8,9)后,还可以作为治疗非肌肉泌尿膀胱癌(NMIBC)的标准术中免疫疗法(NMIBC)。 这种NMIBC的合并方法为迄今为止为膀胱癌提供了最成功的治疗方法(8、10)。 过去,对BCG疫苗进行了抗癌特性检查,直到今天才尚不清楚。 然而,据推测,BCG通过其在泌尿膀胱内上肾上腺免疫学细胞因子表达的能力并诱导训练有素的免疫原理膜的形式(11)具有抗肿瘤特性(11)。 目前,膀胱肿瘤仍然是世界上最常见的十大癌症(12)。 此外,在过去的二十年中,膀胱癌的发病率一直在增加,膀胱癌的发生率在第一个世界国家 /地区较高(13)。 在这些国家中,结核病疫苗接种计划已经停止或针对高风险个体,包括来自TB流行地区的批准,以及在高度拥挤的条件下居住的一些人口(4-6)。 与TUR结合使用时,BCG在防止NMIBC复发中的作用是良好的护理和标准的。 本范围的文献综述总结了目前对膀胱癌与BCG疫苗接种之间联系的已知内容,以及以前的BCG免疫是否具有以后生命中膀胱癌发展的任何保护机制。南美和东亚继续对结核病接种疫苗,而其他国家仅依靠仅对高风险群体的靶向疫苗接种(5-7)。超过30年; BCG材料在尿道切除术(TUR)(8,9)后,还可以作为治疗非肌肉泌尿膀胱癌(NMIBC)的标准术中免疫疗法(NMIBC)。这种NMIBC的合并方法为迄今为止为膀胱癌提供了最成功的治疗方法(8、10)。过去,对BCG疫苗进行了抗癌特性检查,直到今天才尚不清楚。然而,据推测,BCG通过其在泌尿膀胱内上肾上腺免疫学细胞因子表达的能力并诱导训练有素的免疫原理膜的形式(11)具有抗肿瘤特性(11)。目前,膀胱肿瘤仍然是世界上最常见的十大癌症(12)。此外,在过去的二十年中,膀胱癌的发病率一直在增加,膀胱癌的发生率在第一个世界国家 /地区较高(13)。在这些国家中,结核病疫苗接种计划已经停止或针对高风险个体,包括来自TB流行地区的批准,以及在高度拥挤的条件下居住的一些人口(4-6)。与TUR结合使用时,BCG在防止NMIBC复发中的作用是良好的护理和标准的。本范围的文献综述总结了目前对膀胱癌与BCG疫苗接种之间联系的已知内容,以及以前的BCG免疫是否具有以后生命中膀胱癌发展的任何保护机制。但是,目前尚不清楚儿童早期给予的BCG疫苗是否实际上是后来生活中膀胱癌发展的一种保护机制,以及膀胱癌的增加是否与各个国家的BCG疫苗接种相关。这项审查的结果将为预防膀胱癌的未来研究努力。
全球水产养殖可持续发展的最大挑战之一是传染病的威胁。需要减少抗生素使用的预防性策略,以确保鱼类健康,最大程度地减少传染病和随后的药物干预措施。最近的策略涉及促进健康的饲料SUP成熟,例如锦葵和益生菌细菌。astaxanthin是一种广泛使用的类胡萝卜素,具有颜色和抗氧化特性,可在受病原体挑战时改善鱼类生长和鱼类的生存。益生菌可以为鱼类提供一系列健康益处,包括增强的饲料消化,维生素的合成,先天免疫反应的增强以及对潜在病原体的主动防御。在这项研究中,我们测试了是否可以将新型益生菌混合物(枯草芽孢杆菌和/或芽孢杆菌含量)用作替代健康和/或化学补充剂,用于在两个塞浦路斯物种,镜片腕(Cyprinus carpio)和红彗星(Carassius auratus auratus auratus)中为astaxanthin superations。使用实验饲料试验和16S rRNA mi焦虫分析,评估了益生菌对远端胃肠道中鱼类生长和微生物群落的影响。此外,在镜鲤鱼中,对血液样本进行了免疫学和血液学参数的测试,而在金鱼中,则分析了皮肤的颜色。胶质鲤鱼食用的astaxanthin显示出显着增加的生长,而B. septilis /b.Indicus柔软的意识对生长绩效的影响无显着影响。在镜鲤鱼,astax anthin和益生菌混合物中会引起肠道微生物群落的显着转变。我们的结果提供了第一个见解,即补充脂肪素的补充如何改变Cyprinid物种中的微生物组成。镜面鲤鱼喂食B. dementilis/b。Indicus显示了潜在的微生物和健康益处的几个指数,例如增加了DI疗法,丰富了潜在的有益细菌以及增强吞噬性活性并创造了无性血液水平。然而,在两个密切相关的塞浦路斯物种中,在金鱼中没有发现对益生菌反应的大量物种特异性差异,对颜色,生长或微生物群落没有影响。进一步研究了补充细菌在鱼类胃睾丸睾丸中的疗效和定殖位点,并且需要在宿主微生物群中观察到的变化的机制,以完全理解对益生菌补充物的物种特异性反应。
今天的摘要,废水从各种来源发射到天然水源中,导致自然水源受到废物污染。在这项研究中,重点是使用枯草芽孢杆菌在皇家泰国陆军化学部科学前的池塘中处理废水。该池塘从RTA化学部门内的办公楼和住宅区收集废水,并将其释放到公共运河中。因此,必须在将废水释放到运河中之前对废水进行处理。收集样品,并将细菌与RTA化学部区域内的土壤和水样分离。然后研究了细菌的纯菌株的基本特征,并测试了21个样品,以产生破坏蛋白质,淀粉和脂肪的酶的能力。发现分离株KCT03,KCT04和KCT05是可以从这三个组中产生酶的细菌。进行了细菌耐药性测试,发现所有3种菌株均不抗性。使用质谱法进行了分化,发现KCT03和KCT05是枯草芽孢杆菌。为了测试其在实验室条件下治疗细菌废物的能力,完全随机的设计(CRD)实验包括3组测试,每个测试都进行了3种重复。测量了水的质量,包括pH,TSS,TDS,COD,BOD和脂肪油和油脂。发现EM3在处理废水方面是最有效的。它在废水中治疗有机物的效率为5.56%,处理废水中的总溶解物质的效率为28.84%,
生物估计化,也称为微生物学诱导的方解石沉淀,是一种涉及酶尿素酶活性的现象。大量的土壤微生物具有产生尿酶的能力。这篇评论文章的主要目的是表示杆菌种类的碳酸钙生物糖化,包括脂肪菌和枯草芽孢杆菌。它们都会沉淀出方解石以及形状和大小,具体取决于外部和内部条件,例如培养基的类型以及所使用的细菌菌株。研究小组增加了对MICP(微生物诱导的碳酸降水)的关注,因为它具有生态友好的应用。不同的细菌菌株是分离的,可能沉淀碳酸盐。从深海报道了许多与芽孢杆菌相关的生物钙化细菌菌株。niotvj5显示出与苏云金芽孢杆菌类似的尿素酶和方解石晶体活性。该菌株可以在深海中的极端条件下生活,并产生强大的单基因生物膜。em(电子显微镜)和抑郁X射线光谱证实了碳酸钙的存在。细菌需要乳酸钙与碳酸钙(Caco 3)反应,该过程称为生物钙化。