关于该项目的途径联盟(加拿大自然资源,cenovus,conocophillips,帝国石油,梅格能源,阳光能源)提议在艾伯塔省东北部建立一个庞大的碳捕获和存储(CCS)网络。该项目将是加拿大最大的项目 - 世界上最大的项目之一。公司提议从麦克默里堡地区捕获13个油砂设施(最终达到20)的二氧化碳,将其通过超过600公里的管道运输到冷湖区,将二氧化碳将通过16-19 Injections通过16-19注射井注入巨大的地下储藏室。虽然途径联盟尚未指定其打算注入二氧化碳的确切土地,但该省的艾伯塔省政府碳封存地图表明,CNRL(代表途径代表该项目)具有大约18,000 km2的评估许可。支持者声称该项目将从13个途径联盟成员的油砂设施中永久存储约100-1200万吨二氧化碳(MT)。,这些设施每年发射约40吨Co 2。油砂的年度排放量在2022年为86吨,自1990年以来增长了467%。公司希望该项目将于2030年完成,该项目的预期寿命约为50年。但是,所涉及的公司尚未制作
文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
政策概述于2020年10月13日,美国与其他七个国家通过了Artemis协定。从那以后,签署人的数量已增长到32个州。非约束协议的签署人同意遵守现有的太空法条约,并在太空探索和商业活动中建立新的可持续性原则。但是,有针对协议的批评,因为它是在联合国国际条约框架以外采用的,并被称为以美国为中心。此外,关于如何与《外层空间条约》的非批准规定一起阅读文档的问题仍然存在。Artemis Accord做出了必要的尝试,以澄清和创建迫在眉睫的空间活动的框架,但也导致了更多问题。
2022/23 背景质量报告的目的是让统计数据用户了解用于制作出版物的数据的质量,以及从该数据中得出的任何统计数据。它还讨论了统计数据的现有用途和用户需求。这项评估与国防统计局于 2024 年 2 月 15 日星期四发布的年度“职业转型伙伴关系统计”有关。 1 联系人 国防统计健康副主任 国防统计健康 Analysis-Health-PQ-FOI@mod.gov.uk 2 简介和统计展示 这份年度官方统计数据提供了 2018/19 至 2022/23 期间离开英国武装部队并使用职业转型伙伴关系 (CTP) 提供的服务的英国正规服役人员(包括廓尔喀士兵)的预计就业结果统计汇总。这些数据提供了服役人员离开英国武装部队后六个月内的预计就业结果。
建议收到报告 #PD-2024-02;并且收到报告 #PD-2024-02 附件 1 中提供的增长管理研究第一阶段报告;并且收到报告 #PD-2024-02 附件 1 中提供的增长管理研究第一阶段报告;并且理事会批准报告 #PD-2024-02 附件 2 中提供的重点研究区域边界,以支持增长管理研究的第二阶段。并且理事会批准报告 #PD-2024-02 附件 2 中提供的重点研究区域边界,以支持增长管理研究的第二阶段。并且理事会批准报告 #PD-2024-02 附件 2 中提供的重点研究区域边界,以支持增长管理研究的第二阶段。
- 使用相关矩阵并分析每个功能以选择合适的培训。- 选择最合适的训练参数以提高准确性并避免过度插入/拟合。- 绘制结果并与真实数据进行比较。
我是一名科学家。我帮助开创了量子计算和现代开放科学运动。我对人工智能也有浓厚的兴趣。所有这些都是我对帮助人们发现和创造的系统和工具的更广泛兴趣的一部分,无论是个人还是集体。我对量子计算的兴趣始于 1992 年。我在这个领域最为人所知的身份可能是与 Ike Chuang (麻省理工学院) 合著的《量子计算标准文本》。这是过去 30 年物理学中被引用次数最多的著作,也是物理学史上被引用次数最多的十部著作之一(基于截至 2015 年左右的 Google Scholar 数据)。我对量子计算方面的三项研究贡献特别感到自豪:(1) 控制纠缠量子态操纵的基本定理;这引发了人们对主要化数学及其与量子力学的关系的广泛兴趣;(2) 将量子计算重新表述为一种在非常高维弯曲空间中的测地线运动;这项工作目前正在接受量子引力研究人员的深入研究,他们利用它来理解黑洞; (3) 发现和早期开发量子计算的光簇状态方法,目前由 PsiQuantum 公司研究(最新一轮融资额约为 2.3 亿美元)。其他贡献包括参与开发量子门隐形传态、量子过程层析成像(用于实验性地表征量子门)以及最早的量子隐形传态实验之一,该实验被《科学》杂志评为 1998 年度十大突破之一。作为这项工作的一部分,我与他人共同创立并指导了量子信息科学计划,担任昆士兰大学量子信息科学基础教授。当时,它是南半球最大的以理论为重点的量子计算小组,也是世界上最大的量子计算小组之一,成员人数不断增加,目前大约有 30 人(教师、博士后、学生)。更广泛地说,通过招聘、指导和会议,我帮助澳大利亚发展成为世界领先的量子计算国家之一。虽然量子计算通常被认为是一种有前途的技术,但这并不是激发我兴趣的原因。我对计算机很着迷,因为它是一种表示和运用知识的手段,可以执行我们称之为人类认知的过程。量子计算机强烈地挑战我们去理解这些过程的根本限制。从历史上看,另一条研究路线也探讨了同样的问题,尽管角度截然不同。在 20 世纪 60 年代和 70 年代,道格拉斯·恩格尔巴特 (Douglas Engelbart)、伊万·萨瑟兰 (Ivan Sutherland) 和艾伦·凯 (Alan Kay) 等早期的计算研究人员开始将计算机设想为增强人类认知的工具。他们开发了许多最强大的想法,这些想法构成了现代用户界面的基础,这些工具扩展了人类的创造力和发现能力。受这些想法的启发,在 20 世纪 90 年代,我对互联网的承诺感到兴奋,它有助于改变科学研究的方式——通过新的工具进行协作,共享数据、代码和想法,以新的方式创造意义。我看到这个承诺在开源编程社区内迅速实现。但很明显,许多障碍阻碍了科学界的这一目标。科学已经开发了一些强大的知识共享系统和规范(例如期刊文章),但也有许多系统在关键方面(例如数据、软件和工具,以及在发现中往往至关重要的隐性知识)对共享的激励作用较弱或完全不鼓励共享。
