要通过分子方法研究海洋环境中的微生物群落,重要的是要以足够的量和纯度提取DNA。样品中抑制剂的存在可能导致虚假的阴性结果或信息丢失,但可以通过实验中的过程控制来突出显示。我们比较了海洋样品上的七种细菌DNA提取方法:鱼皮,g和胆量,软体动物肉,浮游植物和浮游动物。在一半的样品中添加了一个过程控制(单核细胞增生李斯特菌)。比较了DNA提取方法的性能,以产生针对细菌TUF基因和过程控制Hlya基因的QPCR扩增的更纯和浓缩的DNA。通过分光光度法测定测定DNA的纯度和浓度。结果表明,使用PowerBiofilm和Purelink微生物组试剂盒获得了最高纯度和浓度DNA。QPCR数据证实了这些试剂盒以更高的扩增效率产生了更好的细菌DNA纯度和浓度。在某些样品中,通过靶向Hlya基因的QPCR检测到抑制剂的存在,表明样品是被抑制剂污染的异质性。DNA提取物适用于海洋环境中的遗传下游应用。
1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。 ); cliu@lsu.edu(C.-C.L. ); nikoleeineck@gmail.com(N.E.I。 ); cscully@lsu.edu(c.m.s. ); mironovich1@lsu.edu(M.A.M. ); reneecarter@lsu.edu(R.T.C。) 2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。); cliu@lsu.edu(C.-C.L.); nikoleeineck@gmail.com(N.E.I。); cscully@lsu.edu(c.m.s.); mironovich1@lsu.edu(M.A.M.); reneecarter@lsu.edu(R.T.C。)2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t.); mluo2@lsuhsc.edu(m.l.)4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。: +1-225-578-9600†这些作者对这项工作也同样贡献。
1 Angers University,Nantes UniversitÉ,Chu Angers,Inserm,CNRS,CRCI2NA,SFR ICAT,F-49000 Angers,法国; aglae.herbreteau@univ-angers.fr(A.H.); yves.delneste@univ-angers.fr(y.d。); dominique.couez@univ-angers.fr(D.C.)2 NantesUniversité,Inserm,Tens,肠道和脑疾病中的肠神经系统,IMAD,F-44000 Nantes,法国; philippe.aubert@univ-nantes.fr(p.a.); philippe.naveilhan@univ-nantes.fr(p.n.); michel.neunlist@inserm.fr(M.N.)3 Chu Nantes,CNRS,CNRS,Inserm,L'Institut du Thorax,F-44000 Nantes,法国; mikael.croyal@univ-nantes.fr(M.C.); stephanie.crossouard@univ-nantes.fr(S.B.-C.)4 Chu Nantes,UniversitédeNantes大学,CNRS,CNRS,SfrSanté,Inserm UMS 016,CNRS UMS 3556,F-44000 Nantes,F-44000 Nantes,法国5 CRNH-OUEST质量群核心核心核心核心范围 * FR FR-44000 NANTARTINES,F-44000 00000 NANTERY:444000 00000 NANTAINTINE,F-44444444444444444444444444444444444444444444444444444444444444444400号laetitia.aymeric@univ-angers.fr†这些作者同样为这项工作做出了贡献。
酸)和含有神经蛋白的食欲刺激剂。植物提取物的抗菌活性可能存在于多种不同的成分中[4]。fenugreek(Trigonella foenum-graecum)属于Fabaceae家族,自远古时代以来一直是必不可少的香料[5]。细菌分为革兰氏染色的生物和未染色的生物。容易染色的生物分为四类:革兰氏阳性球菌,革兰氏阴性球,革兰氏阳性杆和革兰氏阴性杆[6,7]。Trigonella feonum-Graecum,通常被称为英格兰的Fenugreek,日本Koroha,India Methi和China Kudu,Fenugreek,fafaceae家族[8]。一年一度的植物,胡芦巴高度为20-60厘米。在长豆荚中成熟的叶子和种子,用于制备用于药用使用的提取物或粉末[9,10]。fenugreek具有改善生物系统健康和功能的许多营养和生物活性化合物。胡芦巴种子具有58%的碳水化合物,23-26%的蛋白质,0.9%的脂肪和25%的纤维。同样,胡芦巴是关键氨基酸的丰富来源,例如天冬氨酸,谷氨酰胺,亮氨酸,酪氨酸和苯丙氨酸[2]。Trigonella feonum-Graecum是记录史上认可的最古老的药用植物之一[11]。仍需要探索体外繁殖植物作为新药来源的潜在用途。基于几项研究性研究,在体内植物中产生的化合物可以在体外种植植物中以相同或不同的水平产生[12]。fenugreek种子具有降血糖和低血糖胆固醇症状,提高边缘葡萄糖消耗,有助于增强葡萄糖的接受度,并在胰岛素受体水平以及胃肠道水平上通过替代品对降糖影响受到降解影响[13];种子还用于治疗胃溃疡,肠炎,尿路感染[14],胡芦巴种子和芽芽剂可与革兰氏阴性菌的变化(例如Escherichia coli和Gram阳性)(例如金黄色葡萄球菌)进行操作[15]。
。CC-BY-NC 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 7 月 17 日发布。;https://doi.org/10.1101/2020.07.17.209189 doi:bioRxiv preprint
摘要生物时温度集成剂(TTI)为改善食品安全和防止变质提供了一种新颖的方法。这些智能工具继电器通过不可逆的色彩转移,时间和温度对它们所附加的食物的微生物质量的累积影响。在迄今为止开发的各种TTI中,生物TTI具有再现食物中发生的微生物腐败反应的优势。它们是基于乳酸细菌(LAB)生长和酸化引起的标签中包含的培养基的pH下降。在开发基于实验室的TTI时,仔细的实验室菌株选择,对TTI生产的研究和开发工作是必要的,以与在储存易腐食品的储存过程中生长的变质和致病微生物的行为相匹配。涵盖广泛的时间温度曲线是一个具有挑战性的目标,涉及不同领域(微生物学,食品科学,建模等)的研究。本章介绍了基于实验室的TTI的设计和工作原理,如何将它们进行参数化以跟踪宽范围的架子传动以及如何评估其性能。还讨论了这种使用乳酸细菌的创新方式的当前应用和未来前景。
摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:医院内的医疗活动导致抗生素的大量消耗,从而导致抗生素残留物的排泄率很高。当这些抗生素被人体服用时,它们不会被人体完全吸收,通常会与受感染的人类患者的生物废物一起排入环境中。医院的大量用水和医疗机构废水中的药物影响促进了抗生素耐药细菌 (ARB) 和抗生素耐药基因 (ARG) 在环境中的出现和传播。医院废水可能在各种生态系统中双重参与抗生素分子和多重耐药细菌的传播。本综述的目的是通过评估环境(水生环境;河流)中这些医院废水中的抗生素浓度和抗生素耐药细菌的多样性来表征医院废水,以及清点医院废水和环境中存在的细菌和携带抗生素耐药性的细菌。
在随访一年的腹水患者中,约 10% 至 30% 的患者会发展为自发性细菌性腹膜炎 (SBP),估计住院死亡率为 20%。[ 1 , 2 , 3 ] 在肝硬化患者中,门诊患者的 SBP 患病率为 1.5% 至 3.5%,住院患者的 SBP 患病率约为 10%。在大多数情况下,SBP 是由肠腔内细菌移位引起的。[ 4 , 5 , 6 ] 较少见的是,SBP 是由源自远处部位(如尿路感染)的菌血症引起的。大部分SBP是由革兰氏阴性肠道菌引起的,例如大肠杆菌和肺炎克雷伯菌,但近年来,由革兰氏阳性球菌,例如肺炎链球菌、葡萄球菌属和肠球菌属引起的SBP比例明显增加[1,7,8]。与SBP发生的危险因素包括肝硬化、腹水总蛋白少于1g/dL、血清总胆红素大于2.5mg/dL、静脉曲张出血和既往发生过SBP[9,10,11,12]。使用质子泵抑制剂可能会略微增加肝硬化和腹水患者发生SBP的风险;因此,在这种情况下,只有对有明确指征的患者才应使用质子泵抑制剂[13]。