[1][2] Zhou,S。和Peng,L。“基于随机森林的审查数据的全球分数学习”,提交。[3] Wallace,M。L.,Mentch,L.,Wheeler,B.J.,Tapia,A.L.,Richards,M.,Zhou,S.,Yi,Yi,L.,Redline,S。和Buysse,D.J。(2023)。“在医学中使用和滥用随机森林的重要性指标:通过事件中风预测进行示范”,BMC Medical Research方法论,23(1),144。[4] Zhou,S。 *和Mentch,L。 *(2023)。“树木,森林,鸡和鸡蛋:何时以及为什么在随机森林中修剪树木”,统计分析和数据挖掘:ASA数据科学杂志,16(1),45-64。[5] Mentch,L。 *和Zhou,S。 *(2022)。“从更糟糕的情况下变得更好:增强的包装和一个警示性的故事,”《机器学习研究杂志》,第23(224)期,第1-32页。
抽象的量子神经网络对许多应用程序具有重要的承诺,尤其是因为它们可以在当前一代的量子硬件上执行。但是,由于量子位或硬件噪声有限,进行大规模实验通常需要显着的资源。此外,模型的输出容易受到量子硬件噪声损坏的影响。为了解决这个问题,我们建议使用集合技术,该技术涉及基于量子神经网络多个实例构建单个机器学习模型。尤其是,我们实施了具有不同数据加载配置的包装和ADABOOST技术,并评估其在合成和现实世界分类和回归任务上的性能。为了评估不同环境下的潜在性能改善,我们对基于模拟的无噪声软件和IBM超导QPU进行了实验,这表明这些技术可以减轻量子硬件噪声。此外,我们量化了使用这些集成技术节省的资源量。我们的发现表明,这些方法即使在相对较小的量子设备上也能够构建大型,强大的模型。
摘要 - 由于人口和车辆的持续增长,全球道路交通事故一直在迅速增加。这项研究的目的是使用机器学习算法来创建一个模型来预测道路交通事故的严重性。该研究重点是预测的极端梯度提升(XGBOOST)算法,并将其性能与其他四种算法(即随机森林,包装,决策树和多层人物的Perceptron)进行了比较。研究方法涵盖了几个基本步骤,包括使用适当的指标进行数据预处理,班级加权,模型构建和绩效评估。结果表明,XGBoost模型在预测道路交通事故的严重程度(尤其是致命严重性事故)方面优于其他模型。该模型的精度为78%,召回57%,F1得分为66%,平衡精度为77%,令人印象深刻的ROC-AUC为90%。结果可以用于战略规划和实施适当措施,以减少和防止泰国道路交通事故。关键字:机器学习,极端梯度提升,道路交通事故的严重程度预测,道路交通事故1.简介
daniel-ioan Stroe能源系Aalborg University Aalborg,丹麦des@energy.aau.dk摘要 - 广泛研究了人工神经网络的健康状况(SOH)估计锂离子电池的估计,因为它们可以从原始数据中识别全球功能,并能够与多二维数据相处。,但模型的性能在一定程度上取决于选择超参数的选择,而超参数在模型训练期间保持恒定。为了提高概括性能和准确性,为电池SOH估算提供了一个集合学习框架,其中将多个极端学习机与装袋技术结合在一起。然后,基本模型的袋子和神经元的数量通过五种常用的高参数优化方法调节。此外,选择具有最大概率密度的SOH值作为输出估计,以进一步提高估计精度。最后,对NMC和LPF电池的实验结果表明,具有超参数优化的提出的方法可以实现稳定而准确的电池SOH估计。无论使用哪种优化方法,NMC和LFP电池的SOH估计的平均百分比误差分别可以保持在1%和1.2%以下。
摘要 - 本文提出了具有控制和外源输入的非线性动力学(SINDY)的稀疏识别,以高度准确,可靠的预测,并将所提出的方法应用于柴油发动机Airpath系统,这些方法被称为非线性复杂工业系统。尽管Sindy被称为识别非线性系统的强大方法,但仍然存在一些问题:由于嘈杂的数据和由于时间段嵌入等协调的扩展而导致的基础功能增加,因此无法保证在工业系统中应用和多步预测的示例。为了解决这些问题,我们提出了基于整体学习,精英收集和分类技术的改进的信明,同时保持凸计算。在拟议的方法中,进行了图书馆的行李,并且收集了R平方的精英大于90%。然后,在幸存的精英上执行聚类,因为并非总是可用的,并且获得的精英模型并不总是显示出相同的趋势。分类后,通过取出每个分类精英的平均值获得离散模型候选者。最后,选择了最佳模型。仿真结果表明,所提出的方法实现了气相系统的多步骤预测,该系统在嘈杂条件下被称为复杂的工业系统。
Airtech Advanced Materials Ltd. 是 Airtech Advanced Materials Group 的英国分部。Airtech Advanced Materials Group 是最大的私营真空袋和复合模具材料制造商,用于预浸料/高压釜、树脂灌注和湿法铺层工艺,最高温度可达 799°F (426°C)。Airtech 成立于 1973 年,是一家家族企业,50 多年来致力于维护其核心价值观并引领行业创新。Airtech 服务于航空航天、风能、太阳能、船舶、汽车和通用复合材料等多个领域。该公司在大型增材制造、先进的 Dahltram® 模具和多用途热塑性树脂方面的最新进展表明了 Airtech 对创新和可持续实践的承诺。 Airtech Advanced Materials Group 旗下包括美国 Airtech International Inc.(加利福尼亚州亨廷顿海滩、加利福尼亚州奇诺、田纳西州斯普林菲尔德)、Airtech Europe Sarl(卢森堡迪弗丹日)、Airtech Advanced Materials UK(英格兰查德顿)、Airtech Asia(中国天津)和 Airtech India(印度果阿)。Airtech 的全球业务覆盖范围使其能够接触全球资源和市场,同时该公司在其运营的每个地区都坚定地致力于以社区为中心的做法。
过去几年,五大湖系统的水位大幅上升。在过去七年中,圣克莱尔湖的水位上升了五英尺多。2019 年冬春的强降水导致圣克莱尔湖的水位持续快速上升,水位高于底特律市部分沿海、运河前沿和河岸线。水位上升导致圣克莱尔湖沿线运河人口密集社区的洪水发生率和洪水严重程度增加。为了应对 2019 年的洪水,随着情况迅速恶化,底特律市采用沙袋技术修建海岸线,并将洪水的影响降至最低。然而,这些努力未能成功减轻所有损失。为了应对 2020 年的洪水,底特律市采用了额外的临时防洪措施,包括 HESCO 屏障和老虎坝结构以及沙袋结构,以对住宅、公共基础设施和公共卫生提供额外保护。这些措施旨在短期内减轻洪水造成的损失,直到在杰斐逊-查尔默斯地区制定和实施更持久的解决方案。
机器学习简介。必需图书馆和工具(Scipy,Numpy,Pandas,Graphviz,Seaborn,Matplotlib软件包)。学习类型 - 受监督和无监督的学习。问题类型 - 回归,分类和聚类;机器学习的应用。讨论关键概念,例如成本函数,优化 - 梯度下降算法。采样,决策界限,模型不合适和过度拟合以及偏见变化权衡,成本敏感模型,电感偏见。贝叶斯学习:概率的基础,贝叶斯规则,生成与判别模型,贝叶斯规则 - 参数估计,最大似然。监督学习:解决回归问题 - 线性回归,正则化 - 脊和拉索。解决分类问题 - 逻辑回归,SVM,决策树。合奏 - 决策森林,包装和增强。无监督的学习:聚类-DBSCAN和桦木。异常检测 - 密度估计。加强学习简介。通过主成分分析缩小维度,内核主成分分析。人工神经网络简介。模型验证和选择:准确性,置信区间,混淆矩阵,精度,召回和其他指标,超参数调整,交叉验证,引导程序和ROC曲线,R平方等等。模型部署 - 在基于云的服务器中部署机器学习模型。
摘要。材料的腐蚀在各个行业构成了重大挑战,从而产生了重大的经济影响。在这种情况下,嘧啶化合物出现是有希望的,无毒的,具有成本效益和多功能腐蚀抑制剂的。然而,识别这种抑制剂的常规方法通常是时必时间的,昂贵的且劳动力密集的。应对这一挑战,我们的研究利用机器学习(ML)预测嘧啶化合物化合物腐蚀抑制效率(CIE)。使用定量结构 - 特性关系(QSPR)模型,我们比较了14个线性和12种非线性ML算法来识别CIE的最准确预测指标。装袋回归模型表现出卓越的性能,达到均方根误差(RMSE)为5.38,均方根误差(MSE)为28.93,平均绝对误差(MAE)为4.23,平均绝对百分比误差(MAPE)为0.05,以预测吡啶胺化合物的CIE值。这项研究标志着腐蚀科学的显着进步,提供了一种新型,有效的基于ML的方法,可替代传统的实验方法。它表明机器学习可以快速,准确地确定有机化学抑制剂(如嘧啶止材料腐蚀)的良好状态。这种方法为行业提供了一种新的观点和可行的解决方案,以解决已经存在的问题。
摘要美国总统大选的结果是影响全球舞台上贸易,投资和地缘政治政策的最重要事件之一。它还为未来几年设定了世界经济和全球政治的方向。因此,这不仅对美国人口,而且要塑造全球群众的未来福祉至关重要。因此,本研究的目的是在2024年总统选举中预测现任政党候选人的普选份额。这项研究应用了基于正规化的机器学习算法,以选择影响选民的最重要的经济和非经济指标。Lasso确定的变量进一步与LASSO(正则化),随机森林(包装)和梯度提升(增强)机器学习技术一起预测,以预测2024年美国总统选举中现任政党候选人的普选份额。调查结果表明,六月的盖洛普评级,平均盖洛普评级,丑闻评级,石油价格指标,失业指标和犯罪率影响现任当事方候选人的普选投票份额。拉索的预测是对普选投票份额预测的最一致的估计。基于拉索的预测模型预测,民主党候选人卡马拉·哈里斯(Kamala Harris)将在2024年美国总统大选中获得47.04%的普选份额。1。简介