地热或地热能是清洁能量的来源,可作为化石燃料的替代品。高温的地热已被广泛利用为发电厂。地热,低温和中等温度具有巨大的潜力,可以使用有机兰金循环/ORC循环成为电力发电机,这是用有机体液体代替水,该液体具有较低的沸点。在这项研究中,兽人配置将在地热中以发电厂的形式呈现。此外,还将检查有机流体作为工作流体的选择,因为这决定了发电机系统的性能/性能。必须将工作流体的选择视为与其特性相关,例如沸点,分解温度及其对系统组件的影响。
1 Wyss生物学启发工程研究所,哈佛大学,波士顿,马萨诸塞州,美国,美国,美国马萨诸塞州梅德福市的生物学系2,美国马萨诸塞州梅德福,美国3号巴卡尔计算健康科学研究所3 Francisco, California, United States of America, 5 Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America, 6 Center for Academic Medicine, Stanford University School of Medicine, Stanford, California, United States of America, 7 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America, 8 Vascular Biology Program and Department of Surgery, Boston美国马萨诸塞州波士顿的儿童医院和哈佛医学院,美国美国马萨诸塞州9哈佛大学约翰·鲍尔森工程与应用科学学院,美国马萨诸塞州剑桥市,美国美国美国
序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
1美国加利福尼亚大学旧金山大学流行病学与生物统计学系美国加利福尼亚州5学术研究服务,信息技术,加利福尼亚大学旧金山,旧金山,加利福尼亚州,美国6美国6美国,加利福尼亚大学旧金山大学,加利福尼亚州旧金山大学医学系,美国,美国7家,美国加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,旧金山,旧金山,美国,美国,美国,美国,美国,美国,美国,美国8号,美国,旧金山。 9加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学旧金山大学预防科学系预防研究中心
从22×8螺旋桨(弦长4.5cm)的测试设备上的误差对比结果来看,误差差最大为7.143%,最小为2.663%,平均误差为4.178%。 22×8螺旋桨(5cm弦)最大误差差为8.824%,最小误差为1.893%,平均误差为3.719%。 4 结论 已对 dle-55cc 发动机推力进行了计算和测试。然后通过比较静态推力计算器值和已进行的测试设备测试数据来验证获得的发动机测试结果,然后查找所使用的燃油消耗值。将测得的推力结果与静态推力计算器值进行比较,得到平均差值。从测试设备上的误差比较来看,22×8螺旋桨(弦长4.5cm)得到的平均误差为4.178%。同时,产生的22×8螺旋桨(5cm弦)误差为3.719%,获得的燃油消耗值为588,600-20,708(N/kW.hr),这显示出良好的降低水平,因此所使用的发动机更加高效。在使用中。从测试结果来看,该发动机试验台具有准确性,能够产生良好的发动机性能,可作为测试和其他学习工具。参考文献 [1] Arismunandar, W. 2002。 “燃气轮机和推进电机简介”。万隆:ITB。 [2] 安德烈·德索萨. 2017.“无人机推进试验台开发
先生。博士Ahmad Ashrif A Bakar B.EEE(UNITEN)、M.Sc(UPM)、Ph.D(UQ)、SM.IEEE、M.OSA、M.IEM 光学传感器设计与系统、激光反馈干涉术与等离子体博士。 Aini Hussain BScEEL(路易斯安那州立大学)、MSc(密苏里理工大学)、PhD(英国马来西亚)、MIEEE Tau Beta Pi 智能信号处理、智能识别与模式分析博士。 Huda Abdullah BSc.(UM)、MSc.(UPM)、PhD(UPM)、MIEEE、MMASS、MIFM、YSN-ASM 薄膜、用于传感器和能源应用的纳米功能材料、半导体材料、磁性材料、陶瓷和材料理论数学与建模 Ir。博士Mandeep Singh A/L Jit Singh MSc(USM),PhD(USM) 无线电波传播,卫星 Ir。博士Mardina Abdullah BEng(琉球)、SmSn(英国马来西亚)、PhD(利兹)电离层研究和卫星方向指导;工程制造与智能系统 (电离层研究与导航卫星 (GPS);工业工程与专家系统 (AI)) Dato' Ir.博士Mohd Marzuki Mustafa 工程学士(塔斯马尼亚州)、理学硕士(曼彻斯特理工大学)、博士(索尔福德)计算机控制系统和仪器博士马里兰州Mamun bin Ibne Reaz 理学学士和理学硕士(拉杰沙希大学),工程博士(茨城大学)VLSI 设计、生物医学传感器、智能家居
1.B.1. 使用遗传算法进行监督学习的有效特征选择(Hilda & Rajalaxmi,2015) 1.B.2. PHGA:用于二元分类特征选择的混合遗传算法(Khiabani & Sabbaghi,2017) 1.B.3. 使用改进的遗传算法和经验模态分解进行 ECG 信号处理的特征选择(Anderson,2015) 1.B.4. 用于支持向量机同时进行模型和特征选择的多目标遗传算法(Bouraoui、Jamoussi & BenAyed,2018) 1.B.5. 基于遗传算法的亲属关系验证特征选择(Alireza-zadeh、Fathi & Abdali-Mohammadi,2015) 1.B.6. 1.B.1. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.2. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.3. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.4. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.5. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.6. 基于遗传算法和粒子群优化混合的特征选择 (Ghamisi & Benediktsson, 2015) 1.B.7. 基于遗传算法的特征选择结合双重分类用于增生性糖尿病视网膜病变的自动检测 (Welikala, Fraz, Dehmeshki, Hoppe, Tah, Mann, Williamson, & Barman, 2015b) 1.B.8. 基于增强遗传算法的混合特征选择用于文本分类 (Ghareb, Bakar, & Hamdan, 2016) 1.B.9. DWFS:一种基于并行遗传算法的包装器特征选择工具 (Soufan, Kleftogiannis, Kalnis, & Bajic, 2015) 1.B.10.基于遗传算法的特征选择方法用于高效的文本聚类和文本分类 (Hong, Lee, & Han, 2015) 1.B.11. 具有积极突变的遗传算法用于 BCI 特征空间中的特征选择 (Rejer, 2015)
摘要:沼气作为工业和家庭用途的可再生能源以及解决全球能源危机的有效方法具有巨大潜力。化石燃料的使用日益增多以及对温室气体排放和气候变化的环境担忧引起了人们对生物气作为替代可再生能源的兴趣。通过控制厌氧降解,可以从家禽粪便、农作物废弃物和牲畜粪便等不同的生物质中生产沼气。本研究旨在了解2018年至2023年从相关国际期刊获得的世界各地沼气研究的发展情况。本研究采用的方法是系统文献综述(SLR)方法。 SLR 方法用于识别、审查、评估和总结有关感兴趣主题领域的所有现有研究,以及相关的具体研究问题。数据是通过使用“出版或消亡”应用程序进行期刊搜索获得的,结果找到了 160 种期刊,这些期刊均来自 Google Scholar 数据库。然后根据文章类型对期刊进行筛选,如果引用次数超过 32,那么就会获得 76 篇文章进行审查。该 SLR 方法展示了几个国家沼气研究的发展情况。
张赛, 1 , 8 Johnathan Cooper-Knock, 2 , 8 Annika K. Weimer, 1 Minyi Shi, 1 Tobias Moll, 2 Jack NG Marshall, 2 Calum Harvey, 2 Helia Ghahremani Nezhad, 2 John Franklin, 2 Cleide dos Santos Souza, 2 Ke Ning, 2 Cheng Wang, 3 Jingjing Li, 3 Allison A. Diliot, 4 Sali Farhan, 4 Eran Elhaik, 5 Iris Pasniceanu, 2 Matthew R. Livesey, 2 Chen Eitan, 6 Eran Hornstein, 6 Kevin P. Kenna, 7 Project MinE ALS 测序联盟, Jan H. Veldink, 7 Laura Ferraiuolo, 2 Pamela J. Shaw, 2 和 Michael P. Snyder 1 , 9 , * 1 遗传学系中心斯坦福大学医学院基因组学和个性化医学系,斯坦福,CA 94305,美国 2 谢菲尔德大学谢菲尔德转化神经科学研究所,谢菲尔德,S10 2HQ,英国 3 伊莱和埃迪丝布罗德再生医学和干细胞研究中心、巴卡尔计算健康科学研究所、帕克癌症免疫治疗研究所和加州大学旧金山分校医学院神经病学系,旧金山,CA 94143,美国 4 麦吉尔大学蒙特利尔神经病学研究所神经病学和神经外科系,蒙特利尔,QC H3A 1A1,加拿大 5 隆德大学生物系,隆德 223 62,瑞典 6 魏茨曼科学研究所分子遗传学系,雷霍沃特 7610001,以色列 7 大学医学中心鲁道夫马格努斯脑中心神经病学系乌得勒支,乌得勒支 3584 CX,荷兰 8 这些作者贡献相同 9 主要联系人 *通信地址:mpsnyder@stanford.edu https://doi.org/10.1016/j.neuron.2021.12.019