BMI集团是一家房地产开发和振兴公司,专门从事适应性的重复使用和重新利用使用终止工业和商业物业及其从线性到循环经济体的过渡。红岩印度乐队(RRIB)是加拿大安大略省西北部的Ojibwe第一民族。理事会是省级领土组织安大略印第安人联盟的独立成员。前磨坊网站正在与RRIB合作开发,作为红岩镇和大尼皮贡地区的催化剂。米工厂重建概念计划(2022)与该镇社区发展策略的核心主题保持一致,概述了BMI对前工厂网站未来的愿望及其概念重建,包括整合未来机会,投资和商业利益的发展。https://www.thebmigroup.ca/
摘要 - 建造土壤水分(SM)的气候数据记录(SM)需要通过合并板载不同卫星的传感器的检索来计算长时间序列,这意味着在原始时间序列上执行偏见校正或重新缩放。由于它们的长时间跨度和高时间频率,模型数据可以用作重新缩放的常见参考。但是,某些应用程序需要避免观察性气候数据记录中的模型依赖性。在本文中,讨论了从L -band传感器之一专门设计用于测量SM的L-带传感器之一的参考遥感数据的可能性。高级微波扫描辐射计2 SM时间序列通过将其累积分布函数(CDF)与土壤水分和海洋盐度(SMOS),土壤水分积极被动(SMAP)和全球土地数据同化系统(GLDAS)Noah Noah模型时间序列相匹配,从而重新缩放。CDF计算作为时间序列的函数进行了批准,从四年到九年中发现了显着差异。通过空间差异代替时间不允许我们从短时间序列中计算出更好的CDF。重新定义的时间序列显示高相关性(r> 0。8)相对于参考,原始的偏差(<0.03 m 3·m -3)。还对使用几个SMO或SMAP数据集进行重新缩放的时间序列也针对原位测量进行了评估,并显示出类似于或使用模型GLDAS重新缩放的表演。评估了观察数据的随机误差和差距对重新恢复的影响。这些结果表明,实际上可以将L-带数据用作来自其他传感器的Rescale时间序列的参考来构建SM的长时间序列。
对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。
1国际应用和理论研究中心(IATRC),巴格达10001,伊拉克2号伊拉克2卡洛斯三世大学,莱加尼斯大学,28911西班牙6号马德里,6电子与传播工程系,耶尔迪兹技术大学,埃森勒,34220,土耳其伊斯坦布尔7,土耳其7工程学院,国王萨特大学,萨特大学,里亚德,里亚德,里亚德,11421,11421,SAUDI ARABIA 8 saudi Arabia Arabia Engineering and Ednap eyh Nemhn Nevern Endering Essering and Edtin,Edten,Edtin,EDTIN,EDTEN, Edinburgh, U.K. 9 Department of Engineering, University of Palermo, Palermo, 90128 Sicily, Italy 10 Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, ISEN, Centrale Lille, Université Polytechnique Hauts-de-France, University of Lille, 59313 Valenciennes,法国11 Insa Hauts-de-France,59313法国瓦伦西恩斯12号工程与建筑学院,恩纳市科尔大学,94100年,意大利ENNA,INTAL NANTATE DE lA RECHERCHE SCOCKICICIQIE(INRS),INRS) 00133意大利罗马15电子与通信工程部,阿拉伯科学,技术与海事运输学院,开罗11865,埃及1国际应用和理论研究中心(IATRC),巴格达10001,伊拉克2号伊拉克2卡洛斯三世大学,莱加尼斯大学,28911西班牙6号马德里,6电子与传播工程系,耶尔迪兹技术大学,埃森勒,34220,土耳其伊斯坦布尔7,土耳其7工程学院,国王萨特大学,萨特大学,里亚德,里亚德,里亚德,11421,11421,SAUDI ARABIA 8 saudi Arabia Arabia Engineering and Ednap eyh Nemhn Nevern Endering Essering and Edtin,Edten,Edtin,EDTIN,EDTEN, Edinburgh, U.K. 9 Department of Engineering, University of Palermo, Palermo, 90128 Sicily, Italy 10 Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, ISEN, Centrale Lille, Université Polytechnique Hauts-de-France, University of Lille, 59313 Valenciennes,法国11 Insa Hauts-de-France,59313法国瓦伦西恩斯12号工程与建筑学院,恩纳市科尔大学,94100年,意大利ENNA,INTAL NANTATE DE lA RECHERCHE SCOCKICICIQIE(INRS),INRS) 00133意大利罗马15电子与通信工程部,阿拉伯科学,技术与海事运输学院,开罗11865,埃及
摘要本文重点介绍了带通(BP)负数组延迟(NGD)功能的时间域分析。创新的NGD调查基于“ lill” - 形状被动微带电路的创新拓扑的时域实验。描述了特定微带形状构成的概念证明(POC)的设计原理。NGD电路的灵感来自最近分布的“ Li” - 拓扑。在时间域调查之前,研究了所研究电路的BP NGD规格是学术上定义的。作为基本定义的实际应用,本文的第一部分介绍了“ lill” - 电路的频域验证。POC电路是由2.31 GHz NGD中心频率和27 MHz NGD带宽的-8 NS NGD值指定的。“ Lill” - 电路的衰减损失约为-6。在NGD中心频率下 2 dB。 然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。 测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。 在NGD中心频率处为1 ns。 使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。 可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。 可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。2 dB。然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。在NGD中心频率处为1 ns。使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。通过使用具有27 MHz频率带宽的高斯向上转换的脉冲,使用测量的“ Lill”电路的Touchstone S-参数从商业工具模拟中理解了BP NGD时间域响应。但是,当将载体调谐为大约等于2.31 GHz NGD中心频率时,输出信号包络线在大约-8 ns中。确认BP NGD响应的时间域典型行为,在测试期间考虑了具有高斯波形的输入脉冲信号。但是,必须在NGD带宽的功能中确定输入信号频谱。在测试后,与输入相比,测量的输出信号信封显示前缘,后边缘和时间效率的峰值。当前可行性研究的结果开放了BP NGD功能的潜在微波通信应用,特别是对于使用ISM和IEEE 802.11标准运行的系统。
印度国家证券交易所Exchange Plaza,地块号c/1,孟买班德拉(East)的G-Block Bandra Kurla Complex,孟买 - 400 051代码号PIIND Dear Sir/ Madam, Sub: Press Release on “PI Industries Limited and C-CAMP Announce Strategic Partnership to Drive Innovation in Biocontrol Technologies” Pursuant to the provisions of Regulations 30 read with Part A of Schedule III and Regulation 46 of the SEBI (Listing Obligations and Disclosure Requirements), Regulations 2015, we are enclosing herewith a copy of Press Release on “PI Industries Limited and C-camp宣布战略合作伙伴关系,以推动生物控制技术创新”。此外,请注意,该新闻稿也可以在公司网站https://www.piindustries.com/investor-relations/co-go/press-release-others/上提供。这是您的信息和记录。感谢您,您忠实地为PI Industries Limited Sanjay Agarwal集团首席财务官兼首席财务官和综合开发单元格式:如上所述。
摘要:可以通过扭曲角度精确控制的空间变化带对齐和电子和孔定位的Moiré杂波,已经成为研究复杂量子现象的令人兴奋的平台。虽然大多数过渡金属二甲化元素(TMD)的异质分子具有II型带对齐,但引入I型带比对可以实现更强的轻度耦合和增强的辐射发射。在这里,我们通过第一原则GW和贝尔特萨蛋白方程(GW-BSE)的计算以及时间和角度解决的光发射光谱(TR-ARPES)测量的结合,与先前的理解相反,与先前的理解相反,MOSE 2 /WS 2杂波在大型型号和类型IS型构建型和同样的区域均与II的类型II型构建型和相似的区域相反。在不同的高对称区域中以小扭曲角度重建。在Tr-arpes中与我们的计算一致,仅在摩西2中观察到长寿命的电子种群,对于具有较大扭曲角的样品,而在具有小扭曲角的样品中,观察到来自两个不同长寿命的激子的信号。此外,尽管这两层的传导带几乎是堕落的,但仍未发生激发杂交,这表明先前观察到的这种材料中的吸收峰来自晶格的重建。我们的发现阐明了Mose 2 /ws 2异质结构中的复杂能量景观,其中I型和II型带对齐的共存为Moiré-Tonable可调光电设备打开了带有内在的侧面异质结的门。
平坦的乐队已成为冷凝物理和材料科学的中心主题[1-5]。由于其独特的无分散能量摩孔关系,平面带中的电子具有消失的组速度和不同的有效质量,导致动能可忽略不计[6,7]。因此,弱相互作用或无序不能被视为扰动。因此,平面系统可以是研究强烈相关效果和设计非常敏感的量子设备的非凡平台。自从发现哈伯德相互作用引起的铁磁性[8,9]以来,已经进行了广泛的研究,以调查平坦带的外来物理学,例如Anderson定位[10],疾病诱导的多效率[11] [11] [15]等。鉴于平板系统的重要性,已经提出了各种构建包含平坦带的系统的方法。本质上,它们可以分为两类。Brute-Force搜索方法从第一原理材料数据库[16-18]或K-均匀的瓷砖数据库[19,20]中获取平板材料的屏幕。这些方法产生了富有成果的结果,对大多数已知材料进行了广泛的分类并建立了综合数据库。但是,他们缺乏设计新材料并控制平坦带能量的能力。需要另一种策略来将平面频段调整为所需的能量。其他方法,例如折纸规则[21],局部单一转换[22,23],线图[9,24 - 27],Miniarrays [28],手性对称性[29],局部对称性[30],潜在对称性[31],嵌入式机制[32]等,涉及专业型号和涉及专业型号的Matiltonian dift/
灵活性组织/注意细节使用适当的语言并倾听维持及时的计时礼貌,礼貌,平易近人,付诸实践,遵守所有请求出于错误,请看到机会所有权,主动性,寻求帮助信任价值和同理心有弹性/与中断的弹性/工作,有良好的判断力改变(和风险)管理积极心态在压力下工作决策者的能力决策者明智的外观智能范围•对等值和多样性的高度脉络•高度的水平•烟气/烟气•hygiensies promises promises promises promisties promisties promisty promisties promisty premistion使用自己的主动权无监督井井有条和彻底•能够满足截止日期能够促进材料管理团队的好处
《材料》(ISSN 1996-1944)于 2008 年创刊。该期刊涵盖 25 个综合主题:生物材料、能源材料、先进复合材料、先进材料特性、多孔材料、制造工艺和系统、先进纳米材料和纳米技术、智能材料、薄膜和界面、催化材料、碳材料、材料化学、材料物理、光学和光子学、腐蚀、建筑和建筑材料、材料模拟和设计、电子材料、先进和功能性陶瓷和玻璃、金属和合金、软物质、聚合物材料、量子材料、材料力学、绿色材料、通用材料。《材料》为投稿高质量文章和利用其庞大的读者群提供了独特的机会。