抽象随机DNA条形码是用于跟踪细胞谱系的多功能工具,其应用从发育到癌症到进化。在这里,我们审查并进行了批判性评估条形码设计以及条形码测序和条形码数据的初始处理方法。我们首先演示各种条形码设计决策如何影响数据质量,并提出一种平衡我们当前知道的所有考虑因素的新设计。然后,我们讨论准备条形码测序文库的各种选择,包括内联指数和唯一的分子标识符(UMIS)。最后,我们测试了几种已建立和新的生物信息学管道的表现,以从原始测序读取和误差校正中提取条形码。我们发现,对齐和基于正则表达式的方法都适合条形码提取,并且专门针对条形码数据设计的错误校正管道优于通用数据。总的来说,这项审查将帮助研究人员以故意和系统的方式进行条形码实验。
Xerafy TRAK 系列提供经济高效的 RFID 资产跟踪标签,针对仓库和工厂进行了优化,可为每个工作流程和生命周期提供实时可见性。
摘要 恶性疟原虫对抗疟药物(包括目前最前沿的抗疟药物青蒿素)的耐药性不断出现,是疟疾控制的一个长期问题。下一代测序大大加速了耐药性相关基因多态性的鉴定,但也凸显了需要更灵敏、更准确的实验室工具来分析现在和未来的抗疟药物,并量化耐药性获得对寄生虫适应度的影响。适应度和药物反应之间的相互作用对于理解为什么特定的遗传背景更能推动自然种群中耐药性的进化至关重要,但寄生虫适应度状况对耐药性流行病学的影响通常很难在实验室中准确量化,因为检测的准确性和通量有限。这里我们提出了一种可扩展的方法来分析基因上不同的恶性疟原虫菌株的适应度和药物反应,这些菌株对几种抗疟药的敏感性有很好的描述。我们利用 CRISPR/Cas9 基因组编辑和条形码测序来追踪整合到非必需基因 (pfrh3) 中的独特条形码。我们在三种具有不同地理来源的菌株的多重竞争性生长测定中验证了这种方法。此外,我们证明这种方法可以成为一种追踪青蒿素反应的有力方法,因为它可以在多种寄生虫系混合物中识别出青蒿素抗性菌株,这表明了一种在条形码寄生虫系文库中扩展费力的环状阶段存活率测定的方法。总的来说,我们提出了一种新颖的高通量方法,用于多重竞争性生长测定来评估寄生虫的适应度和药物反应。
L. Guo博士,C。XU教授国际生物界面和生物调节州食品科学与技术的关键实验室,以及食品科学与技术学院江南大学1800 Lihu Road,Wuxi,Jiangsu Province 214122,P。R. R.中国电子邮件: S. ji,X. Chen教授灵活设备创新中心(IFLEX)MAX PLANCK – NTU联合实验室,用于人造感官材料科学与工程学学校Nanyang Technological University 50 Nanyang Avenue 50 Nanyang Avenue,新加坡639798,新加坡电子邮件,新加坡电子邮件: 639798,新加坡教授J. CAI数据科学系和AI Monash University Clayton,Victoria 3168,澳大利亚电子邮件:Jianfei.cai@monash.eduL. Guo博士,C。XU教授国际生物界面和生物调节州食品科学与技术的关键实验室,以及食品科学与技术学院江南大学1800 Lihu Road,Wuxi,Jiangsu Province 214122,P。R. R.中国电子邮件: S. ji,X. Chen教授灵活设备创新中心(IFLEX)MAX PLANCK – NTU联合实验室,用于人造感官材料科学与工程学学校Nanyang Technological University 50 Nanyang Avenue 50 Nanyang Avenue,新加坡639798,新加坡电子邮件,新加坡电子邮件: 639798,新加坡教授J. CAI数据科学系和AI Monash University Clayton,Victoria 3168,澳大利亚电子邮件:Jianfei.cai@monash.edu
摘要:当今世界充满了创新。每年,人们都可以看到和发现不同的发明,例如小工具、机器、电子产品和许多其他与这一代人息息相关的发明,这些发明使生活变得更加轻松。人们每天在学校、工作和办公室中使用最多的是技术。通过这一点,作者发表了一篇论文,该论文应用了车辆停车技术。车辆用于上学、工作、商场和人们想去的每一个地方。停车一直是人们面临的一个问题,尤其是在拥挤的城市。有时将车辆停放在停车场并不总是安全的,因为有些人可以使用工具偷车,而监控人员不会识别他是否是真正的车主。面对这些问题,研究人员提出了一个想法,即开发一个名为“基于条形码的车辆停车监控系统”的系统。该系统的主要目的是保护、组织和监控停车场的停车位。研究人员根据确定现有问题中的问题后建立的概念框架和系统架构开发了该系统。研究人员使用 alpha、beta 和验收测试来测试系统的功能。对系统功能的测试是一个测试过程。在试点测试期间,受访者对系统的功能、可靠性和可用性的评价为“非常同意”,这证实了系统实现了其目标。
《药品供应链安全法案》(DSCSA)于 2013 年 11 月 27 日签署成为法律,旨在通过识别和清除美国药品供应链中的假冒和危险药品/产品来增强 FDA 保护消费者的能力。DSCSA 规定,到 2023 年,美国将拥有一个电子的、可互操作的系统,该系统将能够监控处方药从制造到分发的整个过程。为了实现这一目标,DSCSA 要求制造商以人类可读的形式在他们打算引入供应链的产品的每个包装和箱子上印上产品标识符。此外,产品标识符必须包括国家药品代码、序列号、批号和有效期,这些都编码在二维条形码中。
本文提及的多种产品和公司名称可能是其各自公司的商标和/或注册商标。GS1 US 代表参与制定本文的各方发布本文,并不表示本文中讨论或推荐的任何方法、产品和/或系统不侵犯任何第三方的知识产权。GS1 US 尚未进行搜索以确定实施本文中包含的任何策略或建议可能侵犯哪些知识产权。GS1 US 在此声明,对于任何一方因实施本文中包含的任何策略或建议而侵犯知识产权的行为,GS1 US 不承担任何责任。
SLS smartPORTAL TM 中集成的 Wave 天线体现了 RFID 天线设计中的全新概念。与在给定方向上辐射单束的贴片天线不同,该天线设计为均匀地照射具有强烈但受限的 RF 读取场的空间体积。Wave 天线元件还以多线性相位模式辐射 - 因此标签从许多不同的相位角被 RF 照射,无论标签方向如何,都可以实现更高的读取率。
SLS smartPORTAL TM 中集成的 Wave 天线体现了 RFID 天线设计中的全新概念。与在给定方向上辐射单束的贴片天线不同,该天线设计为均匀地照射具有强烈但受限的 RF 读取场的空间体积。Wave 天线元件还以多线性相位模式辐射 - 因此标签从许多不同的相位角被 RF 照射,无论标签方向如何,都可以实现更高的读取率。