swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
主席: Bart Gaetjens 先生* 董事会主席 Greg Akers 先生 The Haskell Company Jason Alford 先生• Health First, Inc. Luther Andal 先生 Streamline Technologies Tim Antonition 先生* Space Coast Credit Union Raul Aviles 先生 BRPH Kristin Bakke 女士 LEAD Brevard Brian Baluta 先生* Lockheed Martin Space Jim Barfield 先生 Luke & As.sociates Courtney Barker 女士 City of Satellite Beach Kevin Barry 先生 Rossway Swan Kim Belardinelli 女士 TD Bank Alan Bernstein 先生 HR Office Savers, Inc. Charles Berry, II TotalCarelT 先生 Leah Blackmore 女士 Courtyard By Marriott- West Melbourne Bonny Block Turner Construction Group Julie Braga 女士 Residence Inn by Marriott Melbourne Thomas Brandon 先生 Brandon Development Enterprises, Inc. Linda Brandt 女士 Brandt Ronat + Company Matt Brandt * Clear Channel Outdoors Scott Brazdo 先生 Black Tie Digital Marketing Colleen Browne 女士* 凯泽大学和政府金融 Cnc/ 主席 Jim Britton 先生 太空海岸房地产经纪人协会 Mark Buongiorno 先生 Tsunami Tsolutions Mark Busalacchi 先生* 墨尔本奥兰多国际机场 Kat Butler 女士• North American Properties Holly Carver 女士 布里瓦德县专员,Rita Pritchett Laura Chiesman 女士,CFP FirstWove Financiaf Danie l Ciuro 先生 Edward Jones Investments Roz Clark 女士 Space Foundation Justyn Cole Sorensen 先生 搬家和仓储 Erik Costin 先生 W + J Construction Carol Craig 女士* Sidus Space & Craig Technologies Brian Curtin 先生,PE* BRPH Craig Day 先生 DRB Packaging Doug Dombroski 先生• 墨尔本市Brett Esrock * Health First, Inc. Daniel Evans 先生全体投资者代表 Sean Farrell 先生Rockledge 市 Scott Fennell 先生高级技术工种 Peter Filiberto 先生棕榈湾市
J. Barry Barker,肯塔基州路易斯维尔河城交通管理局执行董事 Allen D. Biehler,宾夕法尼亚州交通部哈里斯堡局长 Larry L. Brown, Sr.,密西西比州交通部杰克逊局执行董事 Deborah H. Butler,弗吉尼亚州诺福克诺福克南方公司规划执行副总裁兼首席信息官 William A.V.Clark,加利福尼亚大学洛杉矶分校地理系教授 Nicholas J. Garber,弗吉尼亚大学夏洛茨维尔分校土木工程系 Henry L. Kinnier 教授兼交通研究中心主任 Jeffrey W. Hamiel,明尼苏达州明尼阿波利斯市大都会机场委员会执行董事 Edward A.(Ned) Helme,华盛顿特区清洁空气政策中心总裁 Randell H. Iwasaki,加利福尼亚州萨克拉门托交通部主任 Adib K. Kanafani,加利福尼亚大学伯克利分校土木工程系 Cahill 教授 Susan Martinovich,内华达州卡森市交通部主任 Debra L. Miller,堪萨斯州托皮卡交通部秘书 Pete K. Rahn,密苏里州杰佛逊市交通部主任 Sandra Rosenbloom,亚利桑那大学图森分校规划教授 Tracy L. Rosser,沃尔玛公司企业交通副总裁路易斯安那州曼德维尔 Steven T. Scalzo,海洋资源集团首席运营官,华盛顿州西雅图 Henry G. (Gerry) Schwartz, Jr.,Jacobs/Sverdrup Civil, Inc. 董事长(已退休),密苏里州圣路易斯 Beverly A. Scott,亚特兰大都会区快速交通管理局总经理兼首席执行官,佐治亚州亚特兰大 David Seltzer,Mercator Advisors LLC 负责人,宾夕法尼亚州费城 Daniel Sperling,加州大学戴维斯分校土木工程与环境科学与政策教授、交通研究所所长、能源效率中心临时主任 Douglas W. Stotlar,Con-Way, Inc. 总裁兼首席执行官,密歇根州安娜堡 C. Michael Walton,德克萨斯大学奥斯汀分校 Ernest H. Cockrell 工程百年讲席教授
参考文献 1. Weng MK、Doshani M、Khan MA 等。19-59 岁成人普遍接种乙肝疫苗:美国免疫实践咨询委员会最新建议,2022 年。MMWR。2022;71(13):477-483。 2. Kuwahara RK、Jabbarpour Y、Westfall JM。需要提高医生的认识以实施普遍接种乙肝疫苗。Am Fam Physician。2022 年 8 月;106(2):132-133。 3. 疾病控制和预防中心。成人乙肝疫苗接种。2023 年 8 月 4 日访问。https://www.cdc.gov/hepatitis/hbv/vaccadults.htm 4. 疾病控制和预防中心。卫生专业人员常见问题。乙肝信息。访问日期:2023 年 8 月 4 日。https://www.cdc.gov/hepatitis/hbv/hbvfaq.htm 5. 疾病控制与预防中心。公共卫生成就:乙肝疫苗接种——美国,1982-2002 年。MMWR 周刊。2002;51(25);549-552,563。 6. Kruszon-Moran D、Paulose-Ram R、Martin CB、Barker LK、McQuillan G。2015-2018 年美国乙肝病毒感染的流行率和趋势。NCHS 数据简报。第 361 号。2020 年 3 月。2023 年 8 月 4 日访问。https://www.cdc.gov/nchs/data/databriefs/db361-h.pdf 7. Lu PJ、Hung MC、Srivastav A 等人。美国成年人口疫苗接种覆盖率监测,2018 年。MMWR Surveill Summ。2021;70(3):1-26。 8. 美国卫生与公众服务部。乙型肝炎基本信息。2023 年 8 月 4 日访问。https://www.hhs. gov/hepatitis/learn-about-viral-hepatitis/hepatitis-b-basics/index.html#:~:text=Hepatitis%20B%20is%20transmitted%20 when,mother%20to%20baby%20at%20birth。 9. Immunize.org。成人接种乙肝疫苗的常规医嘱。访问日期:2023 年 8 月 4 日。https://www.immunize.org/catg.d/p3076.pdf 10. Bjork A、Morelli V。医疗机构和提供者的免疫策略。疾病控制和预防中心。访问日期:2023 年 8 月 4 日。https://www.cdc.gov/vaccines/pubs/pinkbook/strat.html
认知储备 (CR) 是指大脑的一种特性,考虑到与年龄相关的大脑变化和脑损伤或疾病的程度,这种特性能够使认知功能优于预期(认知衰老和痴呆症储备和复原力研究定义合作实验室,2022 年)。较高的 CR 与痴呆症的发病延迟和发病率降低有关(Reed 等人,2010 年;Soldan 等人,2020 年;Zahodne 等人,2015 年),并且与具有阿尔茨海默病遗传风险的个体的住院风险降低有关(Filshtein 等人,2019 年)。 CR 是一个可修改的结构,可能受各种生活经历的影响,例如教育程度(Malek-Ahmadi 等人,2017 年)和职业复杂性(Boots 等人,2015 年)以及遗传因素(Barker 等人,2021 年;Dumitrescu 等人,2020 年)。准确测量 CR 可以改善痴呆症的临床诊断(Stern,2012 年)、临床试验中干预效果的测量(Mondini 等人,2016 年)、干预研究中参与者的分层(Stern,2012 年)以及旨在增强 CR 的干预措施的制定(Moga 等人,2019 年)。准确的 CR 神经影像学测量可能有助于识别特定的 CR 相关大脑网络,可以通过神经调节(Arvaneh 等人,2018 年;Scheinost 等人,2020 年)或神经刺激技术(Kim 等人,2019 年)进行针对性治疗。CR 通常使用社会行为变量(“代理”)来衡量,这些变量反映了被认为有助于 CR 的各种一生经历的接触程度(Stern 等人,2020 年)。虽然这种测量方法方便且便宜,但它在理论和方法上受到限制,因为代理是自我报告变量,无法捕捉整个动态 CR 结构(Bettcher 等人,2019 年;Jones 等人,2011 年;Ward 等人,2015 年)。另一种使用结构神经成像的测量方法是 CR 残差,其操作上将 CR 定义为考虑大脑结构和人口统计学因素后认知中无法解释的差异(Bettcher 等人,2019 年;Reed 等人,2010 年;Zahodne 等人,2013 年)。与社会行为代理相比,CR 残差可以更好地反映 CR 随时间的变化(Stern 等人,2020 年)。然而,CR 残差
通过名字姓氏公司名称2/28/2025 Stephanie Abezetian Gannett Fleming,Inc。2/28/2025 Emily Achelpohl Hdr Engineering,Inc。4/30/2025 Mercy Mercy Ajala Ajala Ajala 4/30/2025 Saud Al Fadhiliis albrethiins Albreth albreth albreth albreth Albreth at Chicago at Chicago at Chicago 10/2024/2024/2024/2024/2024/2024/ 1/31/2025 Erin Aleman Metro Strategies, Inc. 6/30/2025 Negin Alemazkoor 5/31/2025 Jeannie Alexander Chicago Transit Authority 6/30/2025 Hilda Alvarez 6/30/2025 Ann Ammash Jacobs 11/30/2024 Madison Anderson Stanley Consultants Inc. 6/30/2025 Paula Andrews Christopher B. Burke Engineering, Ltd. 5/31/2025 Melissa Angelucci Synnov Group, Inc. 1/31/2025 Monica Aziz Gannett Fleming, Inc. 2/28/2025 Kayla Baldwin 11/30/2024 Nicole Barker NICTD 6/30/2025 Victoria Barrett Chicago Metropolitan Agency for Planning 4/30/2025 Katie Bell Cook County Government Illinois 3/31/2025 Gretchen Bella 5/31/2025 Megan Benetatos V3 Companies 5/31/2025 Kauri Benner Jacobs 7/31/2025 Angela Beusse 12/31/2024 Nora Bhuiya RTA- Regional Transportation Authority 10/31/2024 Mary Bis Amtrak 12/31/2025 Laura Bloomberg帕特里克工程公司(Patrick Engineering Inc. 10/31/2024 Trudy Buehler Mackie Consultants,LLC 3/31/2025 Lauren Busansky Kimley -Horn and Associates,Inc。7/31/2025 Julie Calzaretta 1/31/2025 Irene Caminer Caminer Caminer Law,LLC。2010/2024 Kristi Candotti Ardmore Roderick 2/28/2025 Denise M Casalino Aecom 3/31/2025 Gina Cason Atlas Engineering Group,Ltd 5/31/2025 Stefanie Cassin Hdr Engineering,Inc. 1/31/2025 Claire Cerne 4/30/2025 Alma Cervantes Metra通勤铁路7/31/2025 Yashna Chandran Michael Michael Michael Baker International 12/31/2024 Tammy Chase Chase Chicago Transit Authority
Racheal Harris,人力资源项目经理 – 公平与包容 DOA/人事管理部 - 第 4 区 Racheal.Harris@wisconsin.gov 签名和日期:Racheal Harris 2023 年 12 月 6 日 提交给 DPM/BEI 的日期:2023 年 11 月 17 日 列出的每个个人或团体都为该计划的制定做出了贡献。规划和开发团队成员:Michelle Robinson (OHE)、Jesse Wielgat (DPM)、Racheal Harris (BEI)、Jennifer Padden (DES)、Jayne Wanless (OS)、Tonya Evans (DMS-MilES)、Langeston Hughes (DCTS)、Aaron Larson (OPIB)、Shireen Ohadi-Hamadani (OHE)、Deb Lafler (DES)、Cecilia Culp (DPH)、Don Wadewitz (DES)、Shavana Talbert (OHE)、Allison Weber (DCTS)、Garrett (Troy) Jackson (DQA)、Mark Thompson (OLC)、Cheryl Jatczak-Glenn (DMS )、Phung Nguyen (OIG)、Ranjit Singh (OIG) 贡献者和其他咨询的主题专家:Bryce Dorff (OPIB)、James (Andrew) Ranson (OPIB)、Kathleen Caron (DES)、DeLaina Siltman (DPM)、James Costello (DES)、Jaclyn Ziebert (DES)、Kym Parado (OHE)、Elizabeth Branney-Gant (DES)、Michelle Schreoder (DMS)、Sheri Carter (OPIB)、Cristina Bahaveolos (DPH)、Alicia Gee (DMS)、Mai J. Lo Lee (DPH) 参与/聆听会议参与者:Aimee Hasenfus (DCTS)、Alexa诺比斯 (DCTS)、唐娜·里默 (DCTS)、威尔·斯塔林 (DCTS-CWC)、Salimata Danioko (DCTS-CWC)、Heather Loomis (DCTS-CWC)、TuVayra Terwilliger (DCTS-MMHI)、Derrick Patenaude (DCTS-MMHI)、Penny Carlson (DCTS-NWC)、Cory Smith (DCTS-SRSTC)、Diane Lenahan (DCTS-SWC)、凯尔西·拉欣 (DCTS-SWC)、麦肯齐·巴克(DCTS- WMHI)、Katie Torres(DCTS-WMHI)、Judi Haymon(DCTS-WRC)、David White(DCTS-WRC)、Lijy Ephraim(DES)、Laurie Palchik(DES)、Richard Wolff(DES)、Irene Au-Young(DES-地区)、Crystal Carter(DMS)、Michelle Osness(DMS)、Michelle Schroeder(DMS-DDB)、Lazandria Hughes(DMS-MilES)、Christina Isenring(DPH)、Jacob Dougherty(DPH)、Carrie Molke(DPH)、Angela Nimsgern(DPH-地区)、Christie Reese(DPH-地区)、Teale Greylord(DPH-地区)、Nikki Andrews(DQA)、Wendy Badzinski(DQA)、Anthony Luckett(DQA)、Tina Harris Biddle(DQA-地区)、Katherine Vang(DQA-地区)、Dondieneita Fleary-Simmons (OS)、Zac Todd (OS)、Mailee Her (OS)、Emma McCurdy (OIG)、Candice Canales (OIG)、Vinh Le (OIG)、Lara Herman (OLC)、Laura Varriale (OLC)、Anthony Davenport (OLC)、Sara Sanders (OPIB)、Tom Kelly (OPIB)
引言细胞外隔室渗透压的变化均被所有灌注组织感受到,并可能改变体积的代谢和细胞功能(Strange,1993)。由于这些细胞变化,渗透压的急剧变化会引起抽搐,瘫痪,昏迷,并且在极端情况下(Bourque等人1994)。因此,细胞外室的体积和渗透率的精确调节对于存活至关重要。行为调整包括通过钠食性和口渴的变化来调节钠和饮水。研究表明,血浆渗透压或循环血容量减少(脱水)的最小升高是发展口渴行为的有效刺激。在哺乳动物中,血浆渗透压的少量增加1-2%或8-10%的细胞外室量减少足以诱导这些动物的水摄入量(Antunes-Rodrigues等,2004;。Fitzsimons 1998)。除了座椅外,钠的食欲行为是维持血清渗透压的重要组成部分。在哺乳动物和某些鸟类中,血浆钠浓度的降低或盐的每日摄入量是有效的刺激性刺激性的,并且这些物种的这种固有行为是稳态的这种固有行为,在细胞外圆形室中保持稳态(Fitzsimons 1998; Beauchamp等,1990)。这组调整的效率低下可能会导致病原体,我们高血压。Simons-Morton,Obarzanek,1997)。许多实验和流行病学研究表明,饮食苏打是导致高血压发展的主要因素(Keys,1970; Horan等,1985; Law等,Law等,1991;。目前,研究表明,成年中疾病的发展与生活初期发生的特定疾病有关,包括产前阶段(Barker等,1989)。Malaga等人,2005年表明,在青春期怀孕的前三个月中经历了呕吐和脱水发作的母亲会产生对钠和收缩压升高敏感性较低的儿童。因此,这些作者表明,可以在出生前通过不同的母体和胎儿影响来确定对钠和血压的敏感性,包括介发生的变化。如前所述,几项研究表明,产前不同的影响(例如母体脱水)会改变敏感性钠的食欲,这可能有利于高血压的发作。但是,这些研究都没有愿意评估儿童期间的变化是否会在成年期间引起这些参数的变化。因此,在出生后引起的大鼠中,对诱导的水,钠,血压和心率周期脱水摄入量的分析试图确定产后阶段的细胞外隔室体积减少是否能够产生钠食性的变化,然后由于变化而变化成为高应达到高压率的风险因素。
31459 IA DEPT OF REV st 工资 25,755.98 31461 AFLAC 其他工资 952.08 31462 COLLECTION SVC CTR 其他工资 1,536.01 31463 IRS 联邦工资 65,619.65 31464 NATIONWIDE RET 保底工资 3,555.75 31465 NATIONWIDE RET SOLS 保底工资 3,470.00 31466 SSI fica 111,488.66 31467 CEDAR VALLEY UNITED WAY 其他工资 7.00 31468 EBC 弹性支出 1,837.04 31470 PECU 其他工资 20,415.64 31473 BDI unif 360.00 31474 BICKLEY, MARK 服务 249.90 31476 BOB BARKER CO INC 补充 1,441.68 31477 C&S REAL ESTATE 租金 325.00 31479 CFU 效用 81.44 31484 CFU 效用 2,355.05 31485 CFU 效用 319.66 31486 CFU 效用 49.98 31489 E CENTRAL IA RURAL ELEC 效用 2,893.13 31490 ECONOLODGE INN & SUITES 租金 275.00 31491 EPM IA 租金 225.00 31492 FULLER, ANGELA 服务 650.00 31493 GALLS LLC util 176.29 31494 GORDON FLESCH CO INC supl 1,263.78 31495 GORDON FLESCH CO INC eqp 10,425.95 31496 HERNANDEZ, JASON svc 500.00 31497 KARENS PRINT RITE supl 169.10 31498 MARCO INC svc 90.00 31499 MARTIN REALTORS INC rent 325.00 31500 MCKESSON MEDICAL SURGICAL supl 424.97 31501 MENARDS CF supl 14.90 31503 MENARDS WLOO supl 89.42 31504 MENARDS WLOO 增值 78.84 31505 PATTERSON DENTAL SUPL INC 增值 412.51 31506 PER MAR SECURITY SVCS svc 2,412.09 31507 SANDEE'S 增值 71.40 31508 SCOTS SUPL CO INC 增值 627.49 31511 BECK, STEPHANIE L 培训 55.00 31512 BUNGER DEBRA 培训 151.20 31514 KLUS, KATHERINE 培训 36.98 31516 TEISINGER LANCE 培训 55.00 31517 WERSINGER, KAREN 培训 55.00 340619 POLK CO SHERIFF 培训 430.68 340620 A TO Z RENTALS LLC 租金 500.00 340621 ABD PROP MGMT 租金 300.00 340622 AG EVOLUTIONS LLC 租金 250.00 340624 ALLIED SYSTEMS INC 当量 2,741.49 340625 AMAZON CAPITAL SVCS INC 增资 5,108.18 340627 ARNOLD MOTOR SUPL 增资 20.74 340628 BABIC PROPS LLC 租金 200.00
visii。参考[1.]P. Shor。(1997)。用于量子分解和离散对数的多项式时间算法,Siam J. Comput,26(5),1484–1509。[2.]Pinto,J。(2022)。Quantum加密后挑战,13。[3.]Mavroeidis,V.,Vishi,K.,Zych,M。D.,JøsangA。(2018)。量子计算对当前密码学的影响,25。[4.]Christopher,P。(2019)。确定量子加密迁移和加密敏捷性中的研究挑战,30。[5.]Barker,W。,Consulting,D.,Polk,W。(2021)。 为量词后加密准备做好准备:探索与采用和使用量子后加密算法相关的挑战,10。 [6.] 穆迪,D。(2022)。 状态报告在NIST Quantum加密标准化过程的第三轮,国家标准技术研究院,盖瑟斯堡,35。。 [7.] liv>。 (2011)。 liv>。 [8.] Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。 关于量子后密码学的报告。 (国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。 [9.] Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Barker,W。,Consulting,D.,Polk,W。(2021)。为量词后加密准备做好准备:探索与采用和使用量子后加密算法相关的挑战,10。[6.]穆迪,D。(2022)。状态报告在NIST Quantum加密标准化过程的第三轮,国家标准技术研究院,盖瑟斯堡,35。[7.]liv>。(2011)。liv>。[8.]Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。 关于量子后密码学的报告。 (国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。 [9.] Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Chen,L.,Jordan,S.,Liu,Y-K,Moody,D.,Peralta,R.,Perlner,R.,Smith-Tone,D。(2016年)。关于量子后密码学的报告。(国家标准技术研究所,马里兰州盖瑟斯堡),NIST内部报告(NISTIR),23。[9.]Chen,L。(2017)。 量子时间中的加密标准:旧酒店中的新葡萄酒? IEEE安全与隐私,15(4),51-57。Chen,L。(2017)。量子时间中的加密标准:旧酒店中的新葡萄酒?IEEE安全与隐私,15(4),51-57。[10.]Zhaohui,C.,Yuan,M.,Tianyu,C.,Jingqiang,L.,Jiwu,J.(2020)。fPGA上的晶体 - 凯伯的高性能面积多项式环处理器,25-35。[11.]Duarte,N.,Coelho,N.,Guarda,T。(2021)。 社会工程:攻击艺术。 in:瓜达,T.,Portela,F.,Santos,M.F。 (eds)技术,信息,创新和可持续性的高级研究。 artiis。 计算机和信息科学中的通信,第1485卷。 Springer,Cham,127。 [12.] 班еш。 з这些。 limlistem。 - хх。 2019。 - 115。 https://openarchive.ua/server/api/core/bitstreams/ed01c4-0251-43f7-9851- ad57979797f1de8e/content#page#page = 59 [13. 13. 13.] Limniotis,K。(2021)。 加密作为保护基本人权的手段,密码学,第1卷。 5,34。 [14.] Chen,L。(2016)。 关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。 [15.] Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。 1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。Duarte,N.,Coelho,N.,Guarda,T。(2021)。社会工程:攻击艺术。in:瓜达,T.,Portela,F.,Santos,M.F。(eds)技术,信息,创新和可持续性的高级研究。artiis。计算机和信息科学中的通信,第1485卷。Springer,Cham,127。[12.]班еш。з这些。limlistem。- хх。2019。- 115。 https://openarchive.ua/server/api/core/bitstreams/ed01c4-0251-43f7-9851- ad57979797f1de8e/content#page#page = 59 [13. 13. 13.]Limniotis,K。(2021)。加密作为保护基本人权的手段,密码学,第1卷。5,34。[14.]Chen,L。(2016)。 关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。 [15.] Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。 1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。Chen,L。(2016)。关于量子后加密术的报告,国家标准技术研究所,NIST IR 8105,23-45。[15.]Hoffstein,J.,Pipher J.,Silverman J. H. Ntru:基于环的公共密钥加密系统,算法编号理论,第1卷。1423,J。P。Buhler编辑。 柏林,海德堡:施普林格柏林海德堡,267–288。1423,J。P。Buhler编辑。柏林,海德堡:施普林格柏林海德堡,267–288。