重离子碰撞物理学的主要目标之一是探索奇异物质态的性质,即热、致密且难相互作用的重子物质。它可以在实验室中通过相对论能量下的重核碰撞来重现。格点量子色动力学 (QCD) 计算表明,在高能和低重子密度下,夸克胶子等离子体 (QGP) 到强子气体的转变是平稳的 [1]。人们普遍认为,最终以三临界点结束的一级相变发生在 √ s = 3 至 10 GeV 之间的能量范围内,例如,参见 [2] 及其参考文献。各种过去和正在进行的实验,如相对论重离子对撞机 (RHIC) 上的束流能量扫描 (BES) 和 BES II [ 3 , 4 ]、欧洲核子研究中心的超级质子同步加速器 (SPS) 上的实验,都在探索与金和铅离子束的碰撞,以发现上述能量范围内的任何特殊性。然而,到目前为止,还没有观察到一级相变和三临界点。未来的实验,如基于核子加速器的离子对撞机设施 (NICA) 和反质子和离子研究设施 (FAIR) 旨在以更高的亮度在给定能量下进行碰撞,这让我们有希望在那里看到一些新的东西。观察相变的困难源于许多因素。其中一些是QGP相存在时间极短(大约10 − 24 fm/ c),系统中粒子数少,物质在坐标和动量空间中都具有高度各向异性等。探测器记录的所有有价值的信息大约是数千个具有相应能量和动量的粒子。因此,很难对它们来自的介质做出任何合理的假设。
上下文。斧头夸克掘金的存在是轴突场的潜在结果,该结果为量子染色体动力学中的电荷结合奇偶校验违规提供了一种解决方案。除了解释物质抗逆点非对称性的宇宙学差异以及可见的 - 黑暗 /ω可见的比率外,这些复合材料的紧凑型物体还可以通过与普通的Baryonic Matter相互作用来代表潜在无处不在的电磁背景辐射。,我们对局部网络的受约束宇宙学模拟(慢)的群内培养基环境中的轴夸克掘金 - 巴里氏菌相互作用进行了深入分析。目标。在这里,我们旨在通过推断出来自轴突夸克nugget-Cluster-Cluster Gas Itsptrotions的热和非热发射光谱来对银河系簇环境中的电磁对应物进行上限预测。方法。我们使用缓慢的模拟分析了161个模拟星系簇的大型样本中轴夸克掘金的发射。这些集群分为150个星系簇的子样本,以五个质量箱为单位,范围为0。8至31。7×10 14 m⊙,以及11个跨识别星系簇的观测。,我们通过假设所有暗物质由轴夸克块组成,研究了Z = 0的红移,在当前阶段的星系簇中的暗物质 - 巴里氏物质相互作用。结果。19 GHz和νT∈[3。97,10。99]×10 10 GHz。结论。将所得的电磁特征与每个星系簇中的热bremsstrahlung和非热宇宙射线(CR)同步器发射进行了比较。我们进一步研究了模仿WMAP,PLANCK,EUCLID和XRISM望远镜的可观察范围的单个频带,用于最有前途的跨识别星系簇,这些星系簇载有轴突Quark Nugget nuggets发射的可检测到的特征。我们观察到在低能和高能频率窗口中的正值,在该窗口中,热和非热轴夸克掘金发射的发射可以显着有助于(甚至超出)频率(甚至超出)频率的发射(甚至超出),最高为νTt t t t≲3842。如果单个簇的Cr同步加速器发射足够低,则发现可以观察到Axion Quark金块的发射特征。导致发射过量的参数中的退化使得在指出正轴夸克nugget多余的特定区域的预测方面具有挑战性;但是,基于此暗物质模型,预期的总星系簇发射的总体增加。轴夸克掘金构成4。在低能量状态下的总星系簇发射的80%的占3842的低能状态。 19 GHz,用于选择跨识别的星系簇。 我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。 我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。占3842的低能状态。19 GHz,用于选择跨识别的星系簇。我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。该模型提出了对暗物质组成的有前途的解释,并有可能通过观察结果来验证这种结果,但我们提出了进一步的变化,旨在完善我们的方法。我们的最终目标是确定在不久的将来提取的斧头夸克掘金的电磁对应物。