背景和动机视觉策略学习涉及将视觉观察映射到运动动作上,使机器人能够有效地与环境互动。传统方法通常在多模式作用分布的复杂性以及对高精度和时间一致性的需求中挣扎。最近引入的扩散策略通过采用有条件的降级扩散过程来生成机器人动作,从而提供了有希望的解决方案。这些模型在产生复杂的行为方面表现出了卓越的性能,使其成为机器人操纵和组装任务的理想候选人。此外,整合自然语言处理(NLP)允许多功能任务调理,使机器人能够根据人类指令执行各种任务。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
量子计算利用量子力学现象(如叠加和纠缠),能够以更高的精度、更省时省能的方式解决各种问题。然而,量子算法依赖于多个预处理和后处理任务,这些任务通常需要在传统硬件上执行,例如数据准备、结果分析和参数优化。由于目前可用的噪声中型量子 (NISQ) 设备容易出错,当今大多数量子算法都被设计为所谓的变分量子算法 (VQA) [2]。VQA 交替在量子设备上执行参数化量子电路和通过评估执行结果的质量来经典优化量子电路参数。此外,量子设备不适合许多传统任务,例如数据持久化或可视化,这使得它们成为补充传统计算机的特殊协处理器。因此,量子应用本质上是混合的,必须从经典和量子的角度以及它们的集成的角度进行设计[4]。
电力电子器件和模块的寿命建模有着悠久的研究历史。两大主要研究方向是数据驱动方法和基于模型的方法。数据驱动方法使用机器学习从经验数据中训练寿命模型。它是一种纯数据挖掘技术,不考虑故障机制。相比之下,基于模型的方法旨在研究故障机制,以便在考虑故障机制的情况下建立寿命模型。虽然数据驱动方法如今由于新一波人工智能的兴起而变得越来越流行,但基于模型的方法一直是经典方法并不断发展。我们的工作属于基于模型的方法。下面,我们将简要回顾主要的基于模型的方法。
本报告使用“技术促进的基于性别的暴力”或“TFGBV”这一术语。虽然不同的组织使用不同的术语来指代这种现象,但联合国妇女署于 2022 年 11 月召集了一组来自全球的不同专家,以制定针对妇女的网络暴力的共同术语和共同概念定义。这建立在学者、政府、国家统计局、女权运动、国际组织和其他性别平等倡导者的工作基础之上。使用技术促进的针对妇女的暴力 (TFVAW) 这一术语,从他们的过程中得出的定义是“任何通过使用信息和通信技术或其他数字工具实施、协助、加剧或放大的行为,导致或可能导致身体、性、心理、社会、政治或经济伤害,或其他侵犯权利和自由的行为”(联合国妇女署,2023 年,技术促进的针对妇女的暴力——专家组成立会议报告)。该组织还指出:“针对妇女的暴力可以用基于性别的暴力(TFGBV)来替代,同时保留描述这一现象的共同定义。”这一定义承认,与所有其他形式的基于性别的暴力一样,基于性别的暴力也根源于歧视性的性别规范并由其促成,这些规范与基于种族、民族、性别认同、性取向和能力等因素的其他形式的歧视相互交织。
方法是根据他们的意愿和可用性选择了14岁及以上的五十个人自愿参加了这项研究。一项李克特级调查评估了学习新技能对认知功能和行为的感知影响,并进行了预研究的调查,以收集人口统计数据和当前的认知能力。主要调查包括有关参与,解决问题,记忆,重点,创造力,信心和持续学习的问题,并以2、4和7周的特定时间间隔进行管理。为了确保数据的准确性和可靠性,调查的设计经过了系统的验证和预测试过程。获得了知情同意书,并通过Google表格匿名进行了调查,并牢固地存储了响应。调查响应被安全存储以确保机密性,数据分析的重点是描述性统计和相关性,以探索学习新技能和认知功能的变化(包括大脑连接性)之间的关系。调查开发的初始阶段涉及与研究假设相关的关键结构:学习新技能对认知能力的记忆功能的影响以及诸如记忆力,问题,关注和问题的影响。基于现有文献和先前关于技能获取和认知发展的研究,制定了一组8个核心问题。这些问题分为主题类别,这些类别解决了认知能力,学习参与和技能的自我评估。此同行审查过程允许对问题的清晰度,相关性和全面性进行反馈。例如,调查要求参与者对他们当前的认知能力的信心,从事挑战认知技能的活动的频率以及在参与新技能后的注意力和解决问题能力方面的提高。为了确保调查的内容有效性,认知心理学和教育评估方面的主题专家对初始问题进行了审查。基于此反馈,进行了少量修订以改善问题措辞,并确保项目与研究的目标直接相关。在调查进行全面执行之前,进行了一个较小的10个人组进行预测试,人口特征与
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
