■Intellectual property rights: Japanese application 2023-175606 (application 2023-10-10) Name of the invention: Methods for labeling inosine bases, detection methods for detecting inosine bases, sequencing methods for sequencing nucleic acids containing inosine bases, inosine base labeling agents, and kits JST Patent application support system (PC T): S2023-0543-N0 Name of the invention: A Novel Technique to Explore Adenosine Deamination via Inosine Chemical Labeling and Affinity Molecular Purification ■Name of public funding projects utilized: AMED Bridge Research Promotion Project Seeds A (Main) 2022基础研究B(总统)(总裁)2022-2024基础研究B(总统)(总统)2019-2021支持研究活动开始(总统)2018年挑战研究(开发)(共享)(共享)2024-2026
摘要:随着人类向雄心勃勃的太空任务迈进,包括火星探索、月球基地和深空旅行,对可靠和可持续的应急燃料来源的需求变得至关重要。本文“为未来提供燃料:火箭应急燃料的创新方法”研究了应对传统方法挑战的火箭燃料生成的尖端方法。它探索了一系列创新技术,从利用原位资源利用的先进推进系统到开发源自可再生能源的生物燃料。该评论重点介绍了用于应急燃料生成的生物反应器中的特定微生物,包括它们的生产率、产量和最近的技术进步。此外,它还研究了用于太阳能燃料技术的光催化剂,分析了它们的效率和将阳光转化为火箭燃料的潜力。本文还讨论了氨作为替代燃料来源,考虑了其能量密度、燃烧挑战以及在燃料电池中用于太空应用的潜力。通过全面概述这些新兴技术,本文旨在阐明火箭燃料创新的未来,提高任务安全性并推进可持续太空探索。
摘要 - 尽管与DNA降低相关的费用正在迅速降低,但目前的成本约为1.3k/tb,这比今天现有的档案存储解决方案从现有的档案存储解决方案中阅读起来昂贵。在这项工作中,我们旨在通过研究DNA覆盖深度问题来减少DNA存储的成本,还要减少DNA存储的潜伏期,该问题旨在减少所需数量的读取数量以从存储系统中检索信息。在此框架下,我们的主要目标是了解如何将错误纠正代码与给定检索算法配对以最大程度地减少测序覆盖范围的深度,同时确保具有很高概率的信息。此外,我们研究了随机访问设置下的DNA覆盖深度问题。I。由于其显着的密度和耐用性,DNA是一种有前途的存储介质。任何DNA存储系统[1],[8],[17],[23]中的主要组件之一是DNA Sequencer,它可以读回用户的预存储信息。如今,DNA测序仪相对于其他替代存储技术的吞吐量相对较慢,并且成本相对较高[19],[24],[25]。这些问题与所谓的DNA储存覆盖深度有关,DNA存储的覆盖深度定义为所述的读数数量与合成寡核的数量之间的比率[12]。减少覆盖范围的深度可以改善任何现有的DNA存储系统的延迟,并降低其成本。简单地说,DNA覆盖深度问题旨在最大程度地减少覆盖深度,同时保持系统可靠性。是由覆盖深度,潜伏期和成本之间的联系的动机,在这项工作中,我们启动了对新问题的研究,被称为DNA覆盖深度概率。在这项工作中,我们研究了所需的覆盖深度作为DNA存储通道,错误校正代码和重建算法的函数。此外,我们试图了解如何将错误纠正的代码与给定的重建算法配对,以最大程度地减少覆盖范围的深度。将在随机和非随机访问设置下研究此问题。DNA覆盖深度问题与优惠券收集器(CCP),Dixie Cup和URN问题[7],[9],[10],[16]有关。对于所有这些问题,假定n种不同类型的优惠券,感兴趣的问题是人们在拥有每种类型的一张优惠券之前应收集多少优惠券。众所周知,如果优惠券是随机统一绘制的(重复),则预期
摘要:这项研究探索了2-(2-(2-(羟基苯基)氨基]苯甲酸(SB1)和(2-羟基苯二苯甲酰烯) - (2-羟基苯基)胺(SB2)SCHIFF基础上的降低溶液中的1M HCL技术(Pdp))的苯甲酸(SB1)和(2-羟基苯苯甲酰苯基) - (2-羟基苯基) - 在浸入时间,抑制剂浓度和温度的不同条件下。傅立叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)技术表征了Schiff碱基和所得腐蚀产物。结果表明,抑制效率随较高浓度的Schiff碱基而提高,但随着温度升高和SB1的降低,抑制效率为89.98%的抑制效率相对较高,高于SB2的抑制效率,而SB2的抑制效率为88.03%。PDP分析表明,Schiff碱基主要抑制阳极反应,起着阳极型抑制剂的作用。最好描述了降低碳钢表面上的席夫碱的吸附行为。热力学和动力学参数证实了席夫碱和低碳钢表面之间的强烈相互作用。FTIR和SEM分析进一步证实了钢表面抑制剂分子相互作用的性质。这些发现表明,在1M HCl溶液中,Schiff碱基是对低碳钢的有效腐蚀抑制剂。
Chapter 1: The Wonder ful World of Organic Chemistry...............................................7 Chapter 2: Dissecting Atoms: Atomic Structure and Bonding....................................15 Chapter 3: Speaking with Pictures: Drawing Structures..............................................35 Chapter 4: Covering the Bases (And the Acids)...........................................................59 Chapter 5: Reactivit y Centers: Functional Groups.......................................................69 Chapter 6: Seeing in 3-D: Stereochemistr y....................................................................85 Part II: Hydrocarbons............................................... 103
• Our bodies are made up of billions of cells • Each cell contains genetic material in the form of DNA • DNA contains ~22,000 genes • Genes determine traits • Each gene is a set of instructions (code) to make a protein with a specific function • Two copies of each gene • DNA sequence (code) is made up of 4 bases • “Genetics” refers to the DNA code
体积 *试剂最终浓度12.5μlPPP主混合1倍PPP主混合物不含MGCL 2(75 mm Tris-HCl,pH 8.8,无MGCL 2(25 O C),20 mm,20 mm(NH 4)2 sO 4,0.01%,0.01%Tween 20,200μmDatp,200μmDctp,200μmDctp,200μmdgn,200μmdgn,theq,200μmdnumtheq,theq,200μmdnumtheq,theq,200μmdnumtheq,theq deq deq deq deq deq deq deq deq deq deq deq deq deq deq deq 200 m少量增长很高。 polymerase, stabilizers and additives) 2.5 μl 25 mM MgCl 2 2.5 mM MgCl 2 1 μl Forward primer 0.1 - 1 μM (~ 20 bases in length) 1 μl Reverse primer 0.1 - 1 μM (~ 20 bases in length 1 μl Template DNA 7 μl PCR H 2 O to a final volume 25 μl *Different volumes can be used, but PPP Master Mix without MGCL 2最终应稀释两次
DOD的ESTCP演示项目描述/目标虽然高效,并且在世界范围内使用,但在美国,GHP在美国不存在。This project will Demonstrate two viable GHP-USTES architectures that: • Reduce installed cost 20% below conventional/full GHPs • Reduce HVAC energy cost at least 30% below conventional HVAC and at least 10% below full Geo • Have no on-site emissions, 80%-100% less cooling water consumption, 40% smaller carbon footprint • Provide Bases a truly sustainable infrastructure “inside the fence” (aka Energy Security)
dsDNA 或 ssODN 作为模板进行精确修复 , 而非同源末端连接 (NHEJ) 介导的随机修复可造成插入 、 缺失或突变 . ssODN: 单链寡核苷酸 ; dsDNA: 双链 DNA Figure 3 Two CRISPR/Cas9 gene editing strategies. Cas9 creates DNA double strand break at three bases upstream of the PAM sequence. Homologous recombination repair (HDR) mediates precise repair using dsDNA or ssODN as a template, while non-homologous end joining (NHEJ) -mediated repair can cause insertion, deletion or mutation. ssODN: Single-strand oligodeoxynucleotide; dsDNA: Double strand DNA