摘要:本文旨在反思亚马逊地区为巴西系统中产生的Hy-Droelectric能源的战略重要性。与当前的盐前油相比,其定量显示了更高能源产生的区域潜力。我们从带来新的和相关的要素的可再生能源的地理位向的角度考虑了这个问题。在本文中,分析框架着重于路径依赖性,智能网格和能源密集型社会及其能源安全政策。因此,我们观察到,在当前的配置中,可再生能源的出现可能是亚马逊长期生态专业化的附加要素,从社会环境的角度来看,令人担忧的后果。
小农户对尼多多盆地CSV中气候引起的压力的v ulnerability和风险行为:设计家庭和乡村级别方法的影响作者的详细信息1。Josephine W Njogu - 博士学位。内罗毕大学农业与兽医学院候选人-Kabete Campus P.O. 框25340-00100,肯尼亚内罗毕通讯作者:josephinenjogu@gmail.com 2。 乔治·卡鲁库(George Karuku)教授(博士学位) - 内罗毕大学农业与兽医科学学院讲师 - 卡贝特校园P.O. 框25340-00100内罗毕,肯尼亚电子邮件:gmoe@uonbi.ac.ke.ke 3。 John Busienei博士 - 内罗毕大学农业与兽医学院讲师 - Kabete Campus P.O. 框25340-00100内罗毕,肯尼亚电子邮件:jbusienei@uonbi.ac.ke.ke 4。 John Kamau Gathiaka教授(博士学位) - 内罗毕经济学院讲师 - 主校园。 P. O. 框30197- 00100 GPO,内罗毕,肯尼亚电子邮件:Gathiaka@ uonbi.ac.ke.ke内罗毕大学农业与兽医学院候选人-Kabete Campus P.O.框25340-00100,肯尼亚内罗毕通讯作者:josephinenjogu@gmail.com 2。乔治·卡鲁库(George Karuku)教授(博士学位) - 内罗毕大学农业与兽医科学学院讲师 - 卡贝特校园P.O.框25340-00100内罗毕,肯尼亚电子邮件:gmoe@uonbi.ac.ke.ke 3。John Busienei博士 - 内罗毕大学农业与兽医学院讲师 - Kabete Campus P.O.框25340-00100内罗毕,肯尼亚电子邮件:jbusienei@uonbi.ac.ke.ke 4。John Kamau Gathiaka教授(博士学位) - 内罗毕经济学院讲师 - 主校园。 P. O. 框30197- 00100 GPO,内罗毕,肯尼亚电子邮件:Gathiaka@ uonbi.ac.ke.keJohn Kamau Gathiaka教授(博士学位) - 内罗毕经济学院讲师 - 主校园。P. O.框30197- 00100 GPO,内罗毕,肯尼亚电子邮件:Gathiaka@ uonbi.ac.ke.ke
抽象冰川和雪融化是溪流的主要水源,以及喜马拉雅西部上印度河上游地区的河流。然而,该冰川盆地的径流幅度预计随着流域的可用能量而变化。在这里,我们使用基于物理的能量平衡模型来估计Chandra盆地上部冰川的表面能量和表面质量平衡(SMB),从2015年到2022年。观察到强烈的季节性,净辐射是夏季的主要能量通量,而在冬季则以潜在而明智的热通量为主导。估计的Chandra盆地冰川上部的平均年度SMB为-0.51±0.28 m W.E.a -1,从2015年到2022年的7年中的累积SMB为-3.54 mW.E。我们发现,冰川的方面,坡度,大小和升高等地理因素有助于研究区域内SMB的空间变异性。发现,需要增加42%的降水量来抵消Chandra盆地上部冰川的空气温度升高而导致的额外质量损失。
由于水文测量技术的局限性,可能需要使用降雨径流模型作为从空间和时间上可用的测量值进行推断的手段,特别是在没有测量值的河流流域以及无法测量的未来,以评估未来水文变化的可能影响(Beven,2001)。因此,有必要使用降雨径流模型将气象输入(降雨、总蒸发量)转换为水文输出。有多种降雨径流模型被广泛使用,以便提供显示特定关注点(通常作为河流流域出口)的直接径流体积流量(Q)随时间变化的过程图,例如,HEC-HMS(美国陆军工程兵团,2000 年)、TOPMODEL(Beven,2001 年)、TAC(Uhlenbrook 和 Leibundgut,2002 年)、TOPKAPI(Liu 和 Todini,2002 年)、IHACRES(Cunderlik,2003 年)、MIKE11 降雨径流(RR)模块(DHI 水与环境,2007b 年)、SOBEK 降雨径流(RR)模块(Delft Hydraulics,2004 年)、TAC D(Uhlenbrook 等,2004 年)、Hydro-BEAM(Smith,2005 年)、PRMS(Yeung,2005 年)、SWAT(Neitsch 等al., 2005) 等。这些水文模型提供了关于动态和
重力恢复和气候实验(GRACE)卫星数据与水文模型的整合可以彻底改变综合水管理,尤其是在连续的美国(Conus)河流盆地。GRACE测量陆生储水异常(TWSA)的能力提供了对传统原位测量无法捕获的地下水和水流动态的关键见解。与水文模型相结合时,GRACE数据可提高流量和地下水补给预测的准确性,从而为各种和复杂的河流盆地提供更好的管理策略。但是,Grace的低空间分辨率提出了挑战,尤其是对于较小的盆地或地形不平的地区。解决此限制需要先进的缩减技术,并与遥感和原位测量等互补数据集进行集成。此外,当与气候变化模型结合使用时,宽限期数据通过识别长期趋势和气候变化和人类活动的脆弱性来支持综合的水资源管理。这种合并的方法有助于制定适应性策略,以维持生态和人类需求的水可用性。未来的研究应着重于完善宽限期应用,以增强分辨率并扩大其在管理较小且更复杂的水系统方面的使用。研究结果是对水资源的理解和预测的宝贵补充,从而在面对气候变化和人类活动的情况下支持可持续水管理实践。
All statements in this presentation, other than statements of historical fact, are "forward-looking information" with respect to Liberty Gold within the meaning of applicable securities laws, including statements that address resource potential quantity and/or grade of minerals, potential size of a mineralized zone, potential expansion of mineralization and resource, the timing of and results of future resource estimate, PEAs and PFSs, expected capital costs, expected gold recoveries the potential upgrade of inferred mineral用于测量和指示的矿产资源的资源,勘探和开发计划的时机以及获得许可证的时间或完成公司矿产项目的赚钱义务。前瞻性信息通常是但并非总是通过使用诸如“寻求”,“预期”,“计划”,“持续”,“继续”,“期待”,“期望”,“项目”,“预测”,“潜在”,“定位”,“”,“预测”,“预测”,“预期”,“相信”,“潜在”,“潜在”,“潜在”或类似的表达方式或范围的事件或varried sirals或varriions of sife'或varriage“”或“预测”, “应该”,“可能”,“将”,“可能”或“将”或“将”或“发生”。许多假设是基于不在自由黄金控制范围内的因素和事件,并且没有保证它们是正确的。前瞻性信息并不是未来绩效的保证,并且基于发表声明之日的许多估计和管理假设,包括解决未来矿物质生产,储备潜力,矿物质区域的潜在规模和/或等级的陈述,潜在的矿物化,矿物质的潜在扩展,潜在的矿业类型的采矿业务;公司矿产项目的勘探和开发计划的拟议时机;部署其他钻机的时间和可能性;成功递送冶金测试结果;关于我们任何属性的初始或更新的矿产资源报告,发行的时间,豌豆或PFS的时机; assumptions about future prices of gold, copper, silver, and other metal prices, currency exchange rates and interest rates, metallurgical recoveries, favourable operating conditions, political stability, obtaining governmental approvals and financing on time, obtaining renewals for existing licences and permits and obtaining required licences and permits, labour stability, stability in market conditions, the impact from pandemics such as that of the novel coronavirus (COVID-19), availability of设备,任何矿产资源和矿产储量的准确性,任何PF的准确性,成功解决争议以及预期的成本和支出。
NWO - USBR 第 7 部分项目 台伯河大坝 2993.0 3012.5 918,394 1,323,068 2979.74 -0.05 705,835 59 407 76.9 0 0.0 克拉克峡谷大坝 5546.1 5560.4 174,300 251,435 5535.53 0.07 124,286 201 50 71.3 0 0.0 峡谷渡口大坝 3797.0 3800.0 1,886,950 1,993,036 3784.31 -0.02 1,474,253 2,747 3,363 78.1 0 0.0 博伊森大坝4725.0 4732.2 741,594 892,226 4712.99 -0.03 535,409 331 702 72.2 0 0.0 布法罗比尔水坝* 5393.5 -- 646,565 -- 5355.96 0.01 374,092 262 198 57.9 -- -- 黄尾鱼水坝 3640.0 3657.0 1,011,052 1,263,682 3627.55 -0.13 874,467 1,537 2,103 86.5 0 0.0 詹姆斯敦水坝 1431.0 1454.0 30,488 220,990 1429.19 0.01 26,543 23 13 87.1 0 0.0 Heart Butte 大坝 2064.5 2094.5 67,142 214,169 2060.52 0.05 54,697 95 10 81.5 0 0.0 Keyhole 大坝 4099.3 4111.5 188,671 329,134 4089.48 0.00 112,468 -31 0 59.6 0 0.0 Pactola 大坝 4580.2 4621.5 55,975 99,038 4569.21 -0.07 47,133 9 32 84.2 0 0.0 Shadehill 大坝 2272.0 2302.0 120,172 350,176 2262.66 -0.03 79,224 -37 19 65.9 0 0.0 Glendo 大坝 4635.0 4653.0 492,022 763,039 4604.93 M 214,485 MM 43.6 0 0.0
蒙大拿州纳舒厄附近的米尔克河 -- 2027.8 20.0 1.9 0.0 226 -- -- -- -- 蒙大拿州沃尔夫波因特的密苏里河 1701.4 1958.6 19.0 11.1 0.1 M -- M M M 蒙大拿州卡尔伯森的密苏里河 1621.0 1883.4 19.0 4.8 -0.2 M -- -- -- -- 蒙大拿州科温斯普林斯的黄石河 -- 5079.1 11.0 0.8 0.0 719 -- -- -- -- 黄石河蒙大拿州利文斯顿附近的黄石河 -- 4542.5 9.5 M M M -- M M M 蒙大拿州比林斯的黄石河 -- 3081.4 13.5 2.4 -0.0 2,271 -- M M M 比格霍恩河蒙大拿州 Bighorn 附近 -- 2700.0 9.0 1.7 -0.1 2,544 -- -- -- -- 蒙大拿州 Miles City 的 Tongue R -- 2351.4 10.0 M M M -- -- -- -- 蒙大拿州 Miles City 的 Yellowstone R -- 2333.3 13.0 3.0 0.0 5,014 -- M M M Powder R 蒙大拿州 Locate 附近 -- 2384.7 9.0 1.8 0.1 549 -- -- -- -- Yellowstone R 蒙大拿州 Sidney 附近 -- 1881.3 19.0 4.4 -0.1 9,445 -- M M M 北达科他州 Williston 的 Missouri R 1553.0 1831.8 22.0 15.4 -0.1 -- -- M M M L ND -- 1930.8 20.0 1.0 0.1 0 -- -- -- -- 加里森至奥阿希河段
从网络获取的数据将可供所有联邦、州和地方机构使用,以改进现有产品和/或开发新产品(例如,NWS 河流预报和洪水展望、国家干旱缓解中心干旱监测和展望、美国垦务局 (USBR) 和美国农业部 (USDA) 国家资源保护局 (NRCS) 供水预报、各种联邦和州火灾危险报告)。具体来说,对于工程兵团而言,国家气象局 (NWS) 国家业务水文遥感中心 (NOHRSC) 将使用这些数据来改进平原雪图。该地图直接输入到 NWS 和工程兵团使用的河流和径流模型中。这些河流和径流模型还使用土壤湿度数据来模拟平原融雪和降雨的影响,以估算工程兵团水库项目的流入量。