摘要:本章探讨了人工智能(AI)和自动化对发达经济体税收税收的影响。它综合了有关工人流离失所,生产力和收入不平等的经验证据,以及理论框架以进行最佳税收。讨论了对税收政策的影响,重点介绍了资本税的水平和劳动税的进步性。虽然可能需要调整资本税水平和劳动所得税的结构,但有可能导致过度累进税收和普遍基本收入计划的潜在弊端,可能会破坏工作激励措施,经济增长和长期家庭福利。关键字:AI,自动化,不平等,人工份额,最佳税收,税收累进性
全局 BETA 模型 [37*] 树提取 - Bastani、Kim 和 Bastani [38*] 提炼和比较模型 - Tan、Caruana、Hooker 和 Lou [39] 符号元模型 - Alaa 和 van der Schaar [40] 局部 LIME - Ribeiro 等人。 [26] 锚点——Ribeiro、Singh 和 Guestrin [41] 归因全局 PDP——Friedman [42] 特征交互——Friedman 和 Popescu [43] ALE——Apley 和 Zhu [44*] 特征重要性——Fisher、Rudin 和 Dominici Kapelner、Bleich 和 Pitkin [47] QII——Datta、Sen 和 Zick [48] SHAP——Lundberg 和 Lee [49] LOCO——Lei 等人。 [46] INVASE - Yoon, Jordon 和 van der Schaar [50] 全球影响力实例示例 - Cook [51] MMD-critic - Kim, Khanna 和 Koyejo [52] 本地影响力实例 - Cook [51] 无条件反事实解释 - Wachter, Mittelstadt 和 Russell
Jianzhou Zhao,博士,2013 年 8 月。形式化基于 SSA 的编译器以进行验证的高级程序转换 Peter-Michael Osera,博士,2016 年 8 月。带类型的程序合成 Jennifer Paykin,博士,2018 年 6 月。嵌入式领域特定语言的线性/非线性类型 Robert Rand,博士,2018 年 12 月。形式化验证的量子编程 Li-yao Xia,博士,2022 年 8 月。(由 Benjamin Pierce 共同监督)具有交互树的可执行表示语义 Yishuai Li,博士,2022 年 5 月。(由 Benjamin Pierce 共同监督)通过对偶化进行测试 Lucas Silver,博士,2023 年 8 月。交互树和形式规范 Irene Yoon,博士2023 年 12 月。LLVM IR 的模块化语义和元理论 Calvin Beck Paul He Nicholas Rioux Lawrence Dunn(由 Val Tannen 共同监督) Stephen Mell(由 Osbert Bastani 共同监督) Joey Velez-Ginorio(由 Konrad Kording 共同监督)
Alexander Khazatsky ∗, 1, Karl Pertsch ∗, 1, 2, Suraj Nair 1, 3, Ashwin Balakrishna 3, Sudeep Dasari 1, Siddharth Karamcheti 1, Sorous Nasiranya 5, Mohan Kumar Srirama 4, LawprenCe Yunliang Chen 2, Kirsty Ellis 6, Peter David Fagan 7, Joey Hejna 1, Masha Itkina 3, Marion Lepert 1, Jason Ma 14, Patrick TREE Miller 3, Jimmy Wu 8, Suneel Belkhale 1, Shivin Dass 5, Huy Ha 1, Abraham Lee 2, Youngwoon Lee 2, 16, Arhan Jain 9, Marius Memmel 9, Sungjae Park 10, Ilija Radosavovic 2, Kaiyuan Wang 11,Albert Zhan 6,Kevin Black 2,Cheng Chi 1,Kyle Hatch 3,San Lin 11,Jingpei Lu 11,Abdul Rehman 7,Pannag r Sanketi 12,Archide Sharma 1,Cody Simpson 3,Cody Simpson 3,Quan Vuong 12,Quan Vuong 12,Quan Vuong 12,Homer Walke 2,Blake Wulfe 3,Blake Wulfe 3,Te Xiao 12 Z. Charlotte Le 2, Yunshuang Li 14, Kevin Lin 1, Roy Lin 2, Zehan Ma 2, Abhiram Maddukuri 5, Suvir Mirchandani 1, Daniel Morton 1, Tony Nguyen 3, Abby O'Neill 2, Rosario Scalise 9, Derick Seale 3, Victor Son 1, Stephen Tian 1, Andrew Wang 2, Yilin Wu 4, Annie XIIE 1,Jingyun Yang 1,Patrick Yin 9,Yunchu Zhang 9,Osbert Bastani 14,Glen Berseth 6,Jeannette Bohg 1,Ken Goldberg 2,Abhinav Gupta 4,Abhishek Gupta 9,Abhishek Gupta 9,Dinesh Jayaraman 14 Rammamoorthy 7,Dorsa Sadigh 1,Shuran Song 1,15,Jiajun Wu 1,Yuke Zhu 5,Thomas Kollar 3,Sergey Levine 2,Chelsea Finn 1
不可否认,人工智能系统在我们日常生活中无处不在:我们与人工智能助手交谈,我们让算法驾驶我们的汽车,我们寻求他们的建议来决定购买什么,等等。虽然我们在构建相当准确和高效的人工智能系统方面在各个领域取得了重大进展,但在大多数情况下,仍然需要人类的监督和/或干预。人类和人工智能之间需要合作的原因有很多。一方面是他们能力的互补性。虽然人工智能可以查看大量数据并做出数学上精确的推断,但它仍然缺乏人类理解抽象概念和用更少的数据进行概括的能力。另一方面,一个关键的考虑因素是,算法并非万无一失,这需要这种人类监督,特别是在高风险决策中。已经有一些案例表明,由于训练数据有限或有偏差,算法推荐存在偏差。人们还报告了由于技术故障导致算法推荐错误的情况 [2]。为了有效利用互补能力并有效减少算法错误,我们需要设计出人类用户能够充分理解并适当信任的系统。为此,研究人员强调了提高模型可解释性和可解释性的重要性。这些努力的重点是以一种有助于人类理解模型的方式传达模型的工作和最终建议。然而,Lakkaraju 和 Bastani [21] 以及 Bansal 等人 [3] 最近的研究表明,用更多信息或解释补充算法决策并不一定能帮助人类用户做出更好的决策。这种观察的一个可能解释是,人类无法建立与算法能力相适应的信任。正如 Huang 和 Fox [17] 所说,现实世界中的决策是基于理性计算(在可用信息和心理资源的限制范围内)和信任的混合。虽然可解释性努力力求使模型更易于理解,但它们并没有积极考虑人类对模型的依赖或信任。在这篇评论中,我们强调了在设计人机有效协作时需要考虑人类信任的问题。在这篇文章中,我们回顾了人机交互方面的工作,重点是了解人类如何以及何时信任机器。1
