目前,关于“固态电池”主题的高级研究学院的持有代表了一系列北约赞助的事件中的逻辑发展。1972年在意大利贝尔格拉蒂(Belgerati)和1975年的科西嘉(Ajaccio)的暑期学校,讲述了“固体 - 州iollics”的主题,涉及固态电力化学和材料科学的基本方面。在1979年在法国奥斯西斯举行的“高级电池材料”的科学委员会研究所的应用中,特定的固体离子导体的应用发挥了重要作用。对这些和相关领域的兴趣在此期间已经大大增长,并且今天持续了。在大学,政府研究实验室和行业,全球以及一系列国际会议和合作中都存在研究与开发计划。高级电池,无论是中学还是初级的电池,在20世纪后期及以后的许多技术发展方面都起着重要的作用。应用包括固定存储,车辆牵引力和远程电力来源,以及工业和无线产品以及消费者和军事电子产品。全盖状态电池的概念并不是什么新鲜事物,但直到最近,他们的性能排除了它们在专家低功率(主要,主要应用)以外的其他用途。最近的材料的开发使固态电池在上述所有应用程序扇区中成为真正的可能性。此外,这些细胞在当今和高级系统上提供了许多吸引人的功能。
锂 - 硅电池是采用硅基阳极,锂离子作为电荷载体的锂离子电池。[1]基于硅的材料通常具有更大的特异性能力,例如原始硅的3600 mAh/g。[2]标准阳极材料石墨限制为完全纤维化状态LIC 6的最大理论能力为372 mAh/g。[3]当插入锂以及在带电状态下的高反应性时,硅的大容量变化(根据晶体密度约为400%)是商业化这种阳极的障碍。[4]商用电池阳极可能具有少量的硅,从而稍微提高了性能。这些金额密切关注的商业秘密,截至2018年,最多限于阳极的10%。[需要引用]锂 - 硅电池还包括细胞构型,其中硅处于化合物中,在低压下,可以通过位移反应储存锂,包括氧化碳酸硅,硅一氧化碳或氮化硅。[5]
摘要:在工业4.0时代,实现生产优化并最大程度地降低环境影响已经变得至关重要。能源管理,尤其是在智能电网的背景下,在确保可持续性和效率方面起着至关重要的作用。锂离子电池由于其多功能性和性能而成为储能的领先技术。但是,准确评估其健康状况(SOH)对于保持网格可靠性至关重要。虽然排放能力和内部电阻(IR)通常使用SOH指标,但电池阻抗也为老化降解提供了宝贵的见解。本文探讨了电化学阻抗光谱(EIS)定义锂电池SOH的使用。通过分析不同频率的阻抗光谱,可以获得对电池降解的全面理解。使用EIS测量和等效电路模型(ECM),在各种放电条件下对圆柱LI -MN电池进行了生命周期分析。这项研究强调了衰老对电池特性的不同影响,强调了不同生命阶段的变化以及阻抗频谱每个区域的行为变化。此外,它证明了EIS的功效和该技术的优势与随着时间的推移跟踪SOH所使用的仅IR测量值相比。这项研究有助于促进对锂电池降解的理解,并强调EIS在确定其健康状况对智能电网应用方面的重要性。
未经MSCI事先书面许可,本文包含的信息(“信息”)不得全部或部分重新染色。该信息不可用来验证或纠正其他数据,以创建索引,风险模型或分析,或与发行,发行,赞助,管理或营销任何证券,投资组合,财务产品或其他投资工具有关。历史数据和分析不应作为对未来绩效,分析,预测或预测的指示或保证。任何信息或MSCI指数或其他产品或服务都不构成购买或出售的要约,或任何担保,财务工具或产品或交易策略的促销或建议。此外,没有任何信息或任何MSCI指数旨在构成投资建议或建议(或避免做出)任何类型的投资决定,并且不得依靠。信息提供的信息是“原样”,并且该信息的用户假定其可能造成或允许对信息的任何用途的全部风险。MSCI Inc。或其任何一个子公司,其或其直接或间接供应商或参与信息制作或编译的任何第三方(每个人(每个)(每个是“ MSCI党”)使任何保证或陈述都在法律允许的最大范围内,每个MSCI党都明确地表明了所有符合所有符合保证金的人,包括所有符合保证金,包括所有商人的权利,均为财产。上述规定不得排除或限制不适用法律不受适用法律的责任。在法律允许的最大范围内,没有任何直接,间接,特殊,惩罚性,惩罚性,后果(包括损失的利润)或任何其他损害,即使被告知有可能造成此类损害的可能性,在任何情况下,任何人都不得对任何信息均不承担任何责任。在任何情况下,任何人都不得对任何信息均不承担任何责任。
锂离子电池目前是最先进的电化学储能技术,由于性能和成本属性平衡。但是,由于传统的锂离子化学正在接近其物理化学限制,我们该怎么做才能进一步降低电池的成本,同时提高其能量密度,寿命和安全性?有关电池电化学性能和接口分析的最新进展的本期特刊,将重点介绍如何改善常规锂离子电池和锂离子后电池的性能。本期特刊将介绍最近对常规锂离子电池的升级以及下一代电化学储能技术的开发。将讨论有关材料,界面,配置和特征的观点和设计思想,以提高电池的性能。潜在的主题包括但不限于以下内容: - 锂离子电池 - 锂离子电池 - 电化学性能 - 接口分析 - 机制研究 - 储能材料 - 材料设计 - 过程优化
摘要:可以重复使用寿命终点电动汽车(EV)电池以降低其环境影响和经济成本。但是,第二人寿市场的增长受到有关这些电池特征和性能的信息的限制。由于寿命的末端电动汽车的数量可能超过固定应用所需的电池量,因此还需要调查在移动应用程序中重新利用它们的可能性。本文提出了一项实验测试,可用于收集填充电池护照所需的数据。提议的程序可以促进有关电池在其第一生结束时重复使用的适用性的决策过程。电池护照完成后,将电池的性能和特性与多个移动应用程序的要求进行比较。移动充电站和叉车被确定为重复使用大容量棱柱细胞的相关应用。最后,提出了对健康状态(SOH)的定义,以跟踪在第二寿命应用程序中使用时电池的适用性,不仅可以考虑到能量,还考虑了电池的功率和效率。此SOH表明,即使考虑到加速的老化数据,重新利用的电池在25°C时的寿命也可以延长11年。还显示,能量褪色是生命周期中最有限的性能因素,并且应该跟踪细胞对电池的变化,因为已证明它对电池寿命有重大影响。
这项研究评估了锂离子蝙蝠模型的数值离散方法,包括有限差异方法(FDM),光谱方法,PAD“近似和抛物线近似值。评估标准是准确性,执行时间和内存使用量,以指导用于电化学模型的Numerical离散方法的选择。在恒定的电流条件下,FDM显式Euler和runge-kutta方法显示出明显的错误。FDM隐式Euler方法通过更多的节点提高了准确性。光谱法实现了5个节点的最佳准确性和转化。FDM隐式Euler和光谱方法都显示出较高的电流的误差减少。pad´e近似具有较大的误差,随着较高的电流而增加,而抛物线方法的误差高于收敛的光谱和FDM隐式Euler方法。执行时间比较显示抛物线方法是最快的,其次是PAD´E近似。频谱方法的表现优于FDM方法,而FDM隐式Euler是最慢的。记忆使用量对于抛物线和PAD´E方法是最小的,对于FDM方法中等,对于光谱方法而言最高。这些发现提供了在锂离子电池模型中选择适当的数值离散方法的见解。
摘要:电池技术最近在设计和制造方面进行了显着进步,以满足广泛应用的性能要求,包括电动性和固定域。对于电子活动性,电池是各种类型的电动汽车(EV)中的重要组件,包括电池电动汽车(BEV),插电式混合动力电动汽车(PHEVS)和燃料电池电动汽车(FCEVS)。这些电动汽车依赖于各种充电系统,包括常规充电,快速充电和车辆到所有(V2X)系统。在固定应用中,越来越多地使用电池用于微/智能网格作为瞬态缓冲储能的电气管理。电池通常与电源电子界面结合使用,以适应各种应用的特定要求。此外,电池本身的电源电子接口在技术上已经发展,从而产生了更多有效的,有效的,紧凑的和鲁棒的功率转换器架构。本文对新一代电池技术进行了全面的综述。从应用,新兴趋势和未来方向的角度来接触该主题。本文探讨了利用创新电极和电解质材料,其应用领域和技术限制的新电池技术。总而言之,提供了讨论和分析,综合了电池的技术演变,同时突出了新的趋势,方向和前景。