研究表明,凝聚物能够调节许多关键的生物过程,而这些凝聚物的异常活性与癌症等疾病的发生有关。这里我们证明缩合物修饰药物(c-mods)针对 CRC 中失调的 β-catenin 转录缩合物活性 • 诱导癌细胞中的 β-catenin 库缩合物,这与体外细胞杀灭相关 • 在包括 CRC 在内的 GI 衍生癌症中表现出强大的细胞毒活性 • 在 CRC 中观察到的体外细胞毒活性在体外转化为 CRC PDO/PDXO 模型 • 体内 c-mod 给药诱导肿瘤细胞中的 β-catenin 库并剂量依赖性下调 β-catenin 驱动的基因转录,这与大量的肿瘤药物水平相关 • 最后,长期服用 c-mods 会在细胞系和 PDX 衍生的 CRC 异种移植模型中产生显着的抗肿瘤活性,并且与 SoC 结合增强了这种活性 综上所述,这些结果表明 β-catenin c-mods 在体外、离体和体内对 CRC 产生强大的抗肿瘤活性,这与 β连环蛋白的定位和转录活性。这些发现凸显了通过冷凝调节靶向异常β-连环蛋白信号在治疗结直肠癌方面的潜力,从而解决这种疾病尚未满足的医疗需求。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。
几项研究探讨了接受SCT的成年患者的锻炼和加强计划的使用(Baumann等,2010,2011; Coleman等,2008; Dimeo等,1997; Dimeo等,1997; Hacker等,2017; Hacker等,2017; jurdi et al。,2021; Knols et al。; knols et al。 Wiskemann&Huber,2008)。先前的研究探索了各种运动和加强干预措施,包括移动,骑自行车测量计,抵抗训练和个性化的物理疗法。与随机或非随机对照患者相比,这些研究主要报道了接受运动疗法的患者的身体性能和生活质量以及减少疲劳的改善。例如,Baumann等。(2010)对64例接受同种异体或ASCT的患者进行了试验,这些患者在移植过程中随机接受剧烈运动或被动疗法。在物理治疗师的监督下,运动组骑着自行车测量计或每天两次行走20分钟。骗局组接受了按摩,协调培训或伸展运动。在出院时,在经过改良的世界卫生组织评估中,运动组在耐力测试中表现出最小的下降(2%),而对照组与基线相比损失了27%的耐力。研究中使用的深入监督耐力训练和设备才是可能仅是因为移植设施的大量投资(Baumann等,2010)。锻炼计划可能需要大量资源,而SCT集合中通常不可用,其中患者护理主要集中于管理剂量密集型治疗的并发症。
安东·伯恩斯(Anton Berns)1.2,Ulrik Ringborg 2.3,Julio E. Celis 2.4,Manuel Heitor 5,Neil K. Aaronson 1,Nancy Abou-Zeid 6,Hans-Olov Adami 7,Kathi Apostolidis 8,Kathi Apostolidis 8,Michael Baumann 2.9,Michael Baumann 2.9 Angelika Eggert 15,Alexander Eggermont 2.16,Carolina Espina 17.18,Frederik Falkenburg 19,J er ^ ome,Douglas Helu 22,22 Big 23,Bengt J€Onsson 24,Mette Kalager 25 31,Francesco de Lorenzo 8,德国弗朗西特,西蒙,西蒙23 23 Oberst 12.33,P Eter Nagy 33.34,Thierry Philip 33.35,Richard Price 36,Richard Price 36,Joachim Sch€uz 17.18
Sahin,Alexander Vogler,Evelyna Derhovanessian,Lena M. Kranz,Mathias Vormehr,Jasmin Qundt,Nicole Bidmon,Alina Baum,Christian E. Pascal,Daniel Maurus。彼得·科赫(Peter Koch),罗尔夫·希尔克(Rolf Hilker)。 Stefanie Bolte,Pallanche,Schultz Armin,Sybille Baumann,Azita J. Mahiny,GáborBoros,Reinholz的Jonas,Catalonia,David Cooper,David Cooper,David Cooper,Christus A. Kyraksous,Philip,Philip,Philip R. Dormit,Kathrin U. Jansen和Türeci的天使
髓磷脂是一种由中枢神经系统(CNS)中的少突胶质细胞的延伸质膜形成的多层结构(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann等,2019)。它会围绕轴突充分包裹,从而产生主要由脂质(70-85%)和蛋白质(15–30%)组成的鞘,它们共同提供电绝缘。脂质成分,包括胆固醇,磷脂和糖脂,使髓磷脂具有绝缘性,而髓磷脂碱性蛋白(MBP)和蛋白质脂质蛋白(PLP)(PLP)(PLP)(PLP)稳定并稳定并压缩层。PLP还将胆固醇分流到髓磷酸室(Werner等,2013)。髓鞘鞘分为节间,它们是沿轴突髓磷脂紧密压实的区域。这些由富含电压门控离子通道的轴突的Ranvier的节点分开。这个结构性组织允许盐分传导,其中仅在节点上仅重新再生动作电位,同时降低了神经元活性的能量需求,从而显着提高了信号传播速度(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann et al。,2019年)。髓磷脂在确保沿轴突的快速有效信号传递来确保动作电位的精确同步方面起着关键作用。这种同步整合了各种兴奋性和抑制性输入,从而实现了神经元通信的准确时机。通过保持动作电位的速度和保真度,髓磷脂支持复杂的神经回路的协调,这对于适当的神经网络功能和过程(例如感觉知觉,运动控制和认知)至关重要。髓磷脂结构的小改变可以促进或破坏动作电位的同步,从而影响神经回路功能(Bonetto等,2021; Monje,2018; Xin and Chan,2020)。
作者Aki Kachi,Silke Mooldijk,Carsten Warnecke承认作者要感谢Martin Baumann,Severin Ettl和Ann Kathrin Schneider的宝贵支持,想法,投入和评论,并评论有助于撰写本文。免责声明本文由Bundfürumwelt和Naturschutz Deutschland E.V.委托。(Bund)作为“加强国际气候倡议(IKI)资助的国家气候政策的公民社会”项目的一部分。德国联邦环境部,自然保护和核安全部根据决议德国联邦议会促进了该倡议。分析,观点和内容代表作者的意见,既不一定代表外滩,IKI或德国联邦共和国的立场。
克里斯蒂娜·费迪南德(Christina Ferdinand),单独,原告 - 诉新泽西收费公路机构,被告人反应人和新泽西州,联合县,克拉克乡镇,克拉克,拉赫韦市和温菲尔德公园,被告。于2025年2月5日提交 - 在Mayer和Puglisi法官面前决定。在新泽西州高等法院上诉中,法律部,联合县法律部,案卷L-1187-19和L-2089-19。 Kuhrt,Femia&Kuhrt,LLC,上诉人律师(David W. Kuhrt,简介)。 McManimon,Scotland&Baumann LLC和Decotiis Fitzpatrick Cole&Giblin LLC,被告新泽西收费公路律师律师(Grant W. )L-1187-19和L-2089-19。Kuhrt,Femia&Kuhrt,LLC,上诉人律师(David W. Kuhrt,简介)。McManimon,Scotland&Baumann LLC和Decotiis Fitzpatrick Cole&Giblin LLC,被告新泽西收费公路律师律师(Grant W.