评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
摘要背景:银行贷款预测是银行业的重要问题。通过使用历史数据并应用预测模型,银行可以识别模式并对贷款违约做出准确的预测。这可以帮助他们做出有关贷款的明智决定,并最大程度地减少损失。目标:研究影响贷款并使用机器学习算法方法预测银行贷款的重要参数:CRISP-DM过程是一种用于开发预测模型的全面且结构化的方法。通过遵循此过程,该研究可以确保采取所有必要的步骤来开发个人贷款的准确和可靠的预测模型。使用三种机器学习算法,例如决策树,幼稚的贝叶斯和支持向量机可以为开发模型提供,并使研究能够选择最佳。结果:结果表明,J48决策树算法达到了98.85%的最高精度,其次是SVM算法,精度为94.01%,而天真的贝叶斯算法的精度为89.53%。在精确,召回和F量表方面,所有三种算法都达到了相似的性能,值范围从0.895到0.989。结论:预测银行贷款的不同机器学习算法的性能表明,根据其高准确性,平均绝对错误和快速培训时间,J48 DT是开发银行贷款预测指标的最合适算法。关键字:银行贷款,Smote,幼稚的贝叶斯,支持向量机,决策树为了提高模型的准确性和适用性,可能有必要收集其他数据或完善特征选择过程以识别最相关的属性。
Jan Novotny(捷克共和国查尔斯大学博士)是Nomura的EFX量子,也是伦敦贝叶斯商学院计量经济学分析中心的研究助理。在他目前的职位上,他是德国银行和汇丰银行的前部官员。在加入该行业之前,他曾在计量经济学分析中心进行高频时间序列的计量经济学模型,并访问了贝叶斯商学院的讲师,在Warwick商学院或Politecnico di Milano进行讲座。他在财务期刊(《金融计量经济学杂志》,《金融市场杂志)和物理学(Physica A》(Physica A,欧洲物理杂志A)中共同撰写了许多论文,与KDB+/Q合着了Book Machine Learning和Big Data与KDB+/Q,Wiley,Wiley,2019年,2019年,在许多会议和周围的Worldsss和Worldshops上展示。在他的博士学位研究期间,他共同创立了量子融资CZ。他是机器学习爱好者,并为此目的探索KDB+/Q。
助教:TBD办公室:TBD办公时间:TBD联系信息:TBD IT帮助:DEN Services目录描述概率;随机变量和向量;关节,边缘和条件分布;贝叶斯定理;随机过程简介;统计推断;回归和生成模型。课程描述课程是适用于所有工程学科的概率和统计信息的简介。班级的重点是学习概率和统计数据的基本概念,这些概念在解释工程/科学数据和概率机器学习技术中的应用中找到了应用。该课程的第一部分将重点关注概率空间,随机变量和向量,累积和概率密度函数,关节,边际和条件概率,贝叶斯定理,中央限制定理以及随机过程的简介。在课程的第二部分中,这些想法将应用于包括参数估计,假设测试,回归和机器学习生成模型的统计任务。学习目标的学生成功完成课程
课程描述:本课程将作为人工智能概念和技术的介绍。我们将涵盖的具体主题包括人工智能的历史和哲学、人工智能系统中的代理范式、搜索、游戏、知识表示和推理、逻辑推理、不确定推理和贝叶斯网络、规划和机器学习。将涵盖的主题:
公共许可策略线性上下文匪徒托马斯·克莱恩·布宁(Thomas Kleine Buening),aadirupa saha,Christos dimitrakakis,Haifeng XU神经信息处理系统会议(Neurips),2024年,[PDF],[PDF]逆增强的环境设计 2024, [pdf ] Bandits Meet Mechanism Design to Combat Clickbait in Online Recommendation Thomas Kleine Buening , Aadirupa Saha, Christos Dimitrakakis, Haifeng Xu International Conference on Learning Representations (ICLR), Spotlight Presentation , 2024, [pdf ] ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non‑Stationary Dueling Bandits Thomas Kleine Buening,Aadirupa Saha人工智能与统计国际会议(AISTATS),2023年,[PDF] minimax -bayes辅助学习Thomas Kleine Buening*,Christos dimitrakakis*,Hannes Eriksson*,Hannes Eriksson*,Hannes Eriksson*,Divya Grover*,Divya Grove*,Emilio Jorge*国际人工智能和人工智能和统计局(A)
1学生,2教授1-2计算机科学工程,1个Sharnbasva University,Kalaburagi,Karnataka,India摘要:心脏病是全球死亡率的主要原因,需要有效及时诊断。这项研究提出了一种使用先进的机器学习技术和数据驱动的见解来预测心脏病的新方法。该系统设计用于识别心脏病,利用各种机器学习分类器在选定功能上的性能。采用了预测模型,包括决策树(DT),天真贝叶斯(NB),随机森林(RF)和支持向量机(SVM)来识别心脏病。评估这些分类器的有效性,以确定最准确的心脏病检测方法。此外,该系统还为患者提供有关最近医生的信息,从而促进快速获得医疗诊断和治疗。这种综合方法旨在增强对心脏病的早期检测和干预,最终改善患者的结果并减轻医疗保健系统的负担。索引术语 - 心脏病,机器学习,预测,识别,决策树,天真的贝叶斯,随机森林,支持向量机,数据驱动的见解,早期检测,医学诊断,医疗保健系统。
摘要算法用于电子商务产品推荐系统。由于人工智能研究社区的发展和增长,这些系统最近才开始利用机器学习算法。该项目愿意改变电子商务平台与用户通信的方式。We have created a model that can customize product recommendations and offers for each unique customer using cutting-edge machine learning techniques, we used PCA to reduce features and four machine learning algorithms like Gaussian Naive Bayes (GNB), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), the Random Forest algorithms achieve the highest accuracy of 99.6% with a 96.99 r square score, 1.92% MSE得分和0.087 MAE得分。结果对客户和业务都是有利的。在这项研究中,我们将详细检查模型的开发和培训,并显示其使用实际数据的表现。从机器中学习可以改变电子商务世界。
实现无信息搜索算法(BFS、DFS) 实现信息搜索算法(A*、内存受限 A*) 实现朴素贝叶斯模型 实现贝叶斯网络 构建回归模型 构建决策树和随机森林 构建 SVM 模型 实现集成技术 实现聚类算法 实现贝叶斯网络的 EM