i NLP 1 1简介的基本算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2正则表达式,令牌化,编辑距离。。。。。。。。。。。。。。。4 3 n克语言模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 4天真的贝叶斯,文本分类和情感。。。。。。。。。。。。。。。。。56 5逻辑回归。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。77 6矢量语义和嵌入。。。。。。。。。。。。。。。。。。。。。。。。。。。。。101 7神经网络。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。132 8 RNN和LSTMS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。158 9变压器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。184 10大语言模型。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>203 11蒙版语言模型。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>223 12模型对齐,提示和内在学习。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>242 div>
摘要 应用软件是关于逻辑、问题解决和创造力的。它基于用户需求。需求是最终用户和软件开发团队之间的桥梁。规划、数据收集、分析、设计、编程、测试、实施和维护过程是软件开发中使用的一些程序。在软件开发过程中,规划和需求分析具有相当大的风险。在 SDLC 的需求分析阶段开始出现的问题将持续存在于软件的整个生命周期中,使其成为 SDLC 的关键阶段。当在需求分析过程中使用自动化技术时,它可以降低软件开发的成本和持续时间。自然语言处理 (NLP) 有助于识别用户需求中的问题。使用监督分类方法(如 SVM、K-Nearest Neighbour 和 Naive Bayes 算法)以及文本向量化技术(如 BoW 和 TF-IDF)对软件需求进行分类和识别。本章的主要目的是在需求分析过程中识别用户需求问题并提供 AI 技术来克服这些问题。关键词:A.I.、ML、NLP、Python、SDLC
动机:人工智能系统需要推理它们知道或不知道的事情。不确定性可能有很多来源:环境可能是随机的,因此无法确定性地预测未来。环境只能部分观察,导致对其余部分的不确定性。当环境包括其他代理或人类时尤其如此,而这些代理或人类的内涵是无法直接观察到的。系统只能收集有限的数据,必然导致不确定的模型。我们需要对所有这些都进行微积分。概率是正确的微积分。实际上,平凡的贝叶斯规则原则上告诉我们如何处理信息:每当我们对某事有先前的不确定性,然后获得新信息时,贝叶斯规则就会告诉我们如何更新我们的知识。这个概念非常普遍,它包括机器学习、(贝叶斯)强化学习、贝叶斯过滤(卡尔曼和粒子过滤器)等的大部分内容。当然,需要注意的是,在实践中计算或近似这种贝叶斯信息处理。在本讲座中,我们将介绍一些概率的基础知识,其中许多您之前在其他课程中已经学过。因此,目的也是回顾和介绍符号。我们介绍的内容对于后面关于老虎机、强化学习、图形模型和关系概率模型的讲座至关重要。
在社交媒体时代,情感分析对于理解公众舆论至关重要。本研究对社交媒体文本中情感分类的五种机器学习算法进行了比较分析:逻辑回归,支持向量机(SVM),随机森林,天真的贝叶斯和梯度增强。使用三个月内收集的100,000条推文的数据集,我们评估了这些算法在将情感分类为正,负或中性的表现。数据经过了广泛的预处理,包括使用SMOTE清洁,归一化和解决类不平衡。我们的结果表明,逻辑回归和SVM的总体准确性为86.22%,表明所有情感类别的表现都平衡。随机森林紧随其后的精度为82.59%,而幼稚的贝叶斯和梯度提升的表现较低,但仍然值得注意的性能分别为70.45%和69.96%。所有模型在分类负面情绪方面均表现出挑战,这表明了潜在的改进领域。该研究提供了对每种算法的优势和劣势的见解,为从业人员选择适当的情感分析任务的指导提供了指导。我们的发现有助于将机器学习应用于社交媒体交流的快速发展的景观中的复杂的情感分析任务。
机器学习简介。必需图书馆和工具(Scipy,Numpy,Pandas,Graphviz,Seaborn,Matplotlib软件包)。学习类型 - 受监督和无监督的学习。问题类型 - 回归,分类和聚类;机器学习的应用。讨论关键概念,例如成本函数,优化 - 梯度下降算法。采样,决策界限,模型不合适和过度拟合以及偏见变化权衡,成本敏感模型,电感偏见。贝叶斯学习:概率的基础,贝叶斯规则,生成与判别模型,贝叶斯规则 - 参数估计,最大似然。监督学习:解决回归问题 - 线性回归,正则化 - 脊和拉索。解决分类问题 - 逻辑回归,SVM,决策树。合奏 - 决策森林,包装和增强。无监督的学习:聚类-DBSCAN和桦木。异常检测 - 密度估计。加强学习简介。通过主成分分析缩小维度,内核主成分分析。人工神经网络简介。模型验证和选择:准确性,置信区间,混淆矩阵,精度,召回和其他指标,超参数调整,交叉验证,引导程序和ROC曲线,R平方等等。模型部署 - 在基于云的服务器中部署机器学习模型。
摘要:认知心理学的经验结果表明,在高度不确定的情况下,许多人倾向于做出非理性决策。为了解决这个问题,人们提出了基于量子概率论的模型,例如类量子贝叶斯网络。然而,该模型在概率推理过程中利用贝叶斯归一化因子将量子干涉效应产生的可能性转换为概率值。这一操作的解释尚不清楚,导致强度波极度倾斜,使得预测这些非理性决策的任务具有挑战性。本文提出了平衡定律,这是一种基于平衡强度波概念的类量子贝叶斯网络中概率推理的新型数学形式。一般的想法是平衡量子干涉产生的强度波,使得它们在贝叶斯归一化过程中相互抵消。通过这种表示,我们还提出了最大不确定性定律,这是一种通过选择熵值最高的波的振幅来预测这些悖论的方法。实证结果表明,平衡定律与最大不确定性定律相结合能够准确预测认知心理学中不同实验中表现出的矛盾或非理性决策,即在囚徒困境博弈和两阶段赌博博弈中。
摘要 — 心理模拟是目标导向行为的关键认知功能,因为它对于评估行为及其后果至关重要。当给定一个自我生成或外部指定的目标时,通过心理模拟从其他候选中选择最有可能实现该目标的一系列动作。因此,更好的心理模拟会带来更好的目标导向行动计划。然而,开发心理模拟模型具有挑战性,因为它需要了解自我和环境。本文研究了如何通过动态组织自上而下的视觉注意力和视觉工作记忆来在心理上生成机器人的充分目标导向行动计划。为此,我们提出了一种基于变分贝叶斯预测编码的神经网络模型,其中目标导向行动计划由潜在意向空间的贝叶斯推理制定。我们的实验结果表明,出现了具有认知意义的能力,例如对机器人末端执行器(手)的自上而下的自主注意以及无遮挡视觉工作记忆的动态组织。此外,我们对比较实验的分析表明,引入视觉工作记忆和使用变分贝叶斯预测编码的推理机制显著提高了规划充分的目标导向行动的表现。
认可吸引了很多人群。例如,它已用于大多数现代设备的安全性。使用机器和深度学习,将提高整体性能,并且标识精度将更加精确。我们旨在发现这些算法在分类人的面部表情中的表现以及我们是否可以依赖它们。步骤如下。首先,我们嵌入数据集中的图像,然后将数据集分为70%的培训数据和30%的测试数据;之后,我们采用五种不同的算法:支持向量机,k-nearest邻居,逻辑回归,天真的贝叶斯和随机森林。支持向量机的准确率为36%,K-Nearest邻居的准确率为52.3%,逻辑回归的精度为64.2%,而天真的贝叶斯的准确率达到了38.1%的准确率。随机森林的准确率为51.7%。使用的数据集是FER13数据集的清洁版本,其中包含16,780个图像分为五个类(愤怒,快乐,中立,厌恶和恐惧)。结果表明,逻辑回归被证明是所介绍的分类器最准确的分类器,F1得分为63.8%,精度为64.2%。
摘要:人类与世界的互动是由不确定性主导的。概率理论是面临这种不确定性的宝贵工具。根据贝叶斯定义,概率是个人信念。实验证据支持以下观点:人类行为与感觉,运动和认知领域的贝叶斯概率推论高度一致。我们大脑的所有高级心理物理功能都被认为将新皮层中神经元的相互联系和分布式网络作为其生理底物的活性。神经元在形式为模糊集的皮质柱中组织。模糊集理论在将成员功能重新解释为可能性分布时,已经接受了不确定性建模。贝叶斯公式的术语是可以想象的,因为模糊集和贝叶斯的推论变成了模糊的推断。根据QBISM,量子概率也是贝叶斯。它们是逻辑构造而不是物理现实。它得出的是,诞生规则不过是一种总概率的量子定律。的波形和测量算子在认识论上被视为。它们两个都类似于模糊集。通过贝叶斯概率在模糊逻辑,神经科学和量子力学之间建立的新链接可能会激发人工智能和非常规计算的发展新想法。
新兴的机器学习技术介绍机器学习技术:统计方法,例如判别分析和主要成分分析;有监督的学习,例如天真的贝叶斯分类器,K最近的邻居和神经网络;无监督的学习方法,例如自组织图和聚类;高维降低,例如线性判别分析(LDA),多种多样学习和特征选择方法;诊断分析和实际案例研究。