我们介绍了基于快速贪婪的等效搜索算法,通过合并本地学到的贝叶斯网络来学习基因调节网络的结构的新方法,用于学习基因调节网络的结构。该方法在Matthews相关系数方面与艺术的状态具有竞争力,该系数既考虑到精度和召回率,同时也可以在速度方面进行改进,扩展到数万个变量,并能够使用有关基因调节网络拓扑结构的经验知识。为了展示我们的方法扩展到大规模网络的能力,我们使用来自不同大脑结构的样本(来自艾伦人脑大脑图书馆)的数据来学习全人类基因组的基因调节网络。此外,这种贝叶斯网络模型应以专家的清晰度来预测基因之间的相互作用,遵循当前可解释的人工智能的趋势。为了实现这一目标,我们还提出了一种新的开放式可视化工具,该工具促进了大规模网络的探索,并可以帮助寻找感兴趣的体验测试节点。
在当今数据驱动的教育技术中,算法对学生的体验和成果产生了关键的影响。因此,采取措施最小化偏见,避免永久性或加剧不平等至关重要。在本文中,我们研究了两个学习分析模式中存在算法偏见的程度:基于贝叶斯知识追踪(BKT)和粗心大意探测器的知识估计。使用来自美国各地使用的学习平台的数据,我们探索了三种不同的方法,探索算法偏差:1)分析样本中每个人口统计组的模型的表现,2)比较这些人口统计学的相互群体的性能,以及这些模型在使用特定组的模型中是否可以在训练过程中进行培训,以观察到训练的过程。我们的实验性研究表明,这些模型的性能在所有人口统计和交叉组中都接近平等。这些发现建立了验证交叉组的教育算法的可行性,并表明这些算法可以公平地用于大规模的不同学生。
使用大数据进行贝叶斯计算的常见分裂方法是分区数据,分别对每一部分进行局部推断,并结合结果以获得全局后近近似值。虽然在概念上和计算上具有吸引力,但该方法涉及有问题的需要,也需要将局部推断的先验分开;这些疲软的先验可能无法为每个单独的计算提供足够的正则化,从而消除了贝叶斯方法的关键优势之一。为了解决这一难题,同时仍保留了基本局部推理方法的普遍性,我们将期望传播(EP)的想法应用于分布式贝叶斯推论的框架。鉴于其他近似值和先验的状态,迭代的想法是迭代地更新局部可能性的近似值。
很大一部分晚期实体瘤具有潜在可治疗的基因组变异体(Fontes Jardim等,2015; Le Tourneau等,2015; Von Hoff等,2010),但实际上很少有癌症患者受益于基因组知识治疗(Marquart等人,2018年)。因此,通过更好的患者分层和疗法的患者设计,有很大的潜力可以改善对个别患者的治疗的使用和利益。精确癌症医学旨在根据每个患者疾病的详细分子表征来指导癌症患者治疗。一种快速获得关注的策略是离体癌症药物敏感性筛查,该策略预示着对癌细胞系和患者衍生细胞中一系列潜在疗法的反应,并确定与药物反应相关的分子特征。研究,药物替代性和分子(多词),数据都可以使用的研究通常称为药物研究。在本文中,我们采用具有高维输入矩阵的多元(多响应)回归设置来分析药物基因组学数据,其中几种药物的敏感性是响应变量,分子(多)OMICS变量是输入特征。我们分析了癌症(GDSC)数据库中药物敏感性基因组学的数据(Garnett等,2012; Yang等,2013),其中包含来自药物敏感性筛选的结果,用于代表数百种泛滥癌症的癌症药物的癌症药物的结果。
2实际上,1919年的日食结果并不是有时描绘的那么简单的确定性。尽管在爱丁顿探险方面收集的数据与一般相对论的理论一致,但来自另一个团队使用的望远镜之一的数据似乎挑战了它。但是,由于技术人工制品,后一个数据集被排除在分析之外。这一决定将导致后来针对爱丁顿11的偏见 - 据说他是“一般相对论的热情支持者”(第37页; 12; 12) - 尽管最近对数据的重新分析证明了原始研究的结论13。除了以后的争议外,还值得注意的是,探险报告的出版
摘要 我们提出了第一个多保真贝叶斯优化 (BO) 方法,用于解决原型量子系统的量子控制中的逆问题。我们的方法自动构建时间相关的控制场,从而实现初始和期望的最终量子态之间的转换。最重要的是,我们的 BO 方法在构建时间相关的控制场方面表现出色,即使对于难以用现有的基于梯度的方法收敛的情况也是如此。我们提供了我们的机器学习方法的详细描述以及各种机器学习算法的性能指标。总之,我们的结果表明 BO 是一种有前途的方法,可以有效、自主地设计一般量子动力系统中的控制场。
认知科学中的经典方法平行于发育心理学的关注领域,这些领域的渴望源于在有限理性的系统中回答表示与学习之间的张力的愿望。一方面,纯粹的本土主义反应是拒绝学习,并专注于描述已经存在的详细表示。在另一方面,经验主义者的反应是暗示没有必要的结构化表示,学习(以及随后的推论)只是学习统计关联的自下而上的过程。在认知发展中也发表了其他辩论。一些研究倾向于将儿童描述为“嘈杂”或“ irra the”成年人,而其他研究则试图证明儿童是有效有效的理性学习者。
著名的贝叶斯说服模型考虑了知情人物(发送者)和未知的决策者(接收者)之间的战略沟通。当前快速增长的文献假定二分法:发件人的功能足够强大,可以与每个接收器分开通信(又称A.私人说服力),或者她根本无法分开交流(又称公开说服)。我们提出了一个模型,该模型通过引入自然的多渠道通信结构来平滑两者之间的插值,每个接收器都会观察到Senderšs通信通道的子集。此捕获,例如网络上的接收器,在该网络上,信息溢出几乎是不可避免的。我们的主要结果是一个完整的表征,指定何时在一个通信结构比另一个通信结构更好的情况下,在所有先前的分布和实用程序功能上都产生更高的最佳预期实用性。表征是基于接收器之间的简单成对关系ű一个接收器信息至少观察到相同的通道,则将其范围为另一个。我们证明,当且仅当M 1中的每个信息对接收器中的每对接收器中,M 1也比M 2更好。此结果是贝叶斯说服的最通用模型,在该模型中,接收者可能具有外部性ű即,接收者的行动相互影响。证明是受密码启发的,它与秘密共享协议有密切的概念连接。作为主要结果的令人惊讶的结果,发件人可以仅使用O(log k)通信渠道而不是幼稚实施中的k渠道来实现k接收器的私人贝叶斯说服(这是发件人的最佳通信结构)。我们提供了一种实现,该实现与通道数量的信息理论下界匹配ű不仅是渐近,而且完全是恰好。此外,主要结果立即暗示了在网络中排列的说服接收器的一些结果,以使每个接收器都观察到发送给他的信号和网络中的邻居。,当自然状态的数量恒定时,发件人具有添加剂函数时,我们还为最佳的Senderšs信号传导方案提供了添加剂fptas,并且接收器的信息为式效用是一个有向森林。我们专注于恒定数量的状态,即使是公众说服力和添加剂senderšs实用程序,[2]表明,人们既不能实现添加剂PTA,也不能实现多项式的恒定时间恒定量子器最佳senderšs实用性近似(除非p = np)。我们离开了未来的研究,研究森林交流结构的确切障碍,并将我们的结果推广到更多的senderšs实用功能和通信结构。请注意,可以轻松地从[3]和[1]中推导出,对于公共和私人说服力,可以为这种实用功能提供最佳信号传导方案。这种差异说明了一般多通道说服力的概念和计算硬度。最后,我们证明,在多渠道说服下使用最佳信号方案对于一个senderšs实用程序功能的一般家族在计算上很难ű可分离的超级乔治函数,这是通过选择接收器集的一组分区并列为多个元素的群众,而不是群体的构成,这些功能是通过选择一组接收器的分区来分配的。
摘要 - 全球变暖是一个重大挑战。在贡献者中,CO 2排放是最重要的,几乎40%的全球排放来自发电。从这个意义上讲,可以使用传统和可再生能源的多源系统中的CO 2排放进行准确的预测,可用于支持碳排放的减少,而不会影响能源需求供应。尽管在该主题中进行了几项相关的研究,但由于可再生能源的间歇性性质引起的更高的不确定性和可变性,因此CO 2启动在多源发电系统中预测是当前的挑战。本文介绍了使用不断发展的动态贝叶斯网络的多源发电系统的CO 2排放预测。我们的提案使用分析阈值来选择数据到达时出现频率的有向边缘,从而使恒定的适应能够平滑地收敛为强大的预测模型。它是使用比利时,德国,葡萄牙和西班牙的多源发电系统的实际数据进行了测试的。将其性能与其他预测方法进行了比较。将结果与不演变结构随时间发展的传统DBN进行比较,我们的提议卓越强调了绩效提高的贡献。与ANN和XGBOOST进行比较时,提出的方法更好,性能具有统计学意义的差异。
在工业环境中从传感器中收集的实时数据的增加量加速了机器学习在决策中的应用。增强学习(RL)是找到实现给定目标的最佳政策的强大工具。但是,RL的典型应用是风险的,并且在动作可能会产生不可逆转并需要解释性和公平性的环境中不足。虽然RL的新趋势可能会根据专家知识提供指导,但它们通常不考虑不确定性或在学习过程中包括先验知识。我们提出了基于贝叶斯网络(RLBN)的因果增强学习替代方案,以应对这一挑战。RLBN同时对政策进行建模,并利用国家和行动空间的联合分布,从而降低了未知情况下的不确定性。我们根据奖励功能和效果和测量的可能性,为网络参数和结构提出了一种培训算法。我们使用普通微分方程(ODE)对Cartpole基准和工业结垢进行了实验表明,RLBN比竞争对手可以解释,安全,灵活和更强大。我们的贡献包括一种新颖的方法,该方法将专家知识纳入决策引擎。它使用带有预定义结构的贝叶斯网络作为因果图和一种混合学习策略,这些策略都考虑了可能性和奖励。这将避免失去贝叶斯网络的优点。