提出了一种结合贝叶斯推断的贝叶斯强化学习可靠性方法,以实现故障概率估计和增强学习指导的顺序实验设计。以可靠性为导向的顺序实验设计被构架为有限的马尔可夫决策过程(MDP),其相关的效用函数由对克里格估计的失败概率的认知不确定性度量定义,称为综合的错误分类概率(IPM)。在此Ba-sis上,定义了一个步骤的贝叶斯最佳学习函数,称为错误分类减少的综合概率(IPMR)以及兼容的收敛标准。采取了三种有效的策略来加速IPMR信息的顺序实验设计:(i)IPMR中内部期望的分析推导,将其简化为单个期望。(ii)替换IPMR替换其上限IPMR U,以避免对其集成的元素计算。(iii)IPMR U中正交集合和候选池的合理修剪以减轻计算机内存约束。在两个基准示例和两个数值示例中证明了所提出的APACH的功效。结果表明,与其他现有学习功能相比,IPMR U促进IPM的快速减少,同时所需的计算时间比IPMR本身要少得多。因此,提出的可靠性方法在计算效率和准确性方面都具有很大的优势,尤其是在复杂的动态可靠性问题中。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
在许多值得关注的科学应用中,量子算法有可能比传统算法快得多。例如量子机器学习 [1]、量子化学 [2] 以及许多其他 [3]。不幸的是,其中许多应用还无法在当前的嘈杂中型量子 (NISQ) 计算机上实现 [4],需要等到噪声源可以被抑制到阈值,使量子计算机可用于实践,甚至构建容错量子计算机 [5]。然而,许多有趣的 LGT 问题已经可以通过 NISQ 设备进行研究 [6]。特别是,如果以哈密顿量公式研究 LGT,量子算法通常不会受到符号问题的影响 [7,8]。一种重要的现成算法是变分量子特征值求解器 (VQE) [ 9 ],它是一种混合量子经典算法,利用变分原理寻找给定汉密尔顿量 H 的基态(和激发态)。VQE 的量子部分用于测量给定多量子比特状态中汉密尔顿量的期望值,即能量,而经典部分则在由参数化量子电路生成的多量子比特状态族中搜索使能量最小化的状态。本文提出的算法是一种经典优化器,旨在找到基态的良好近似值,尽可能减少能量测量的次数。这里选择的方法称为贝叶斯全局优化。它的首次应用可以追溯到 20 世纪 60 年代 [ 10 ],而它的现代实现则基于最近的研究 [ 11 ]。该方法的基础是高斯过程回归 (GPR),这是一种基于高斯过程贝叶斯推理的插值方法。它使我们能够使用有限量的 (嘈杂) 数据创建黑盒函数的预测模型。在每次优化迭代中,该模型用于确定一组可能接近全局最小点的参数。此步骤按照称为获取函数优化的过程执行。这里提出的优化能量的算法不同于 VQE 中常用的其他替代方法,因为它不仅使用能量的估计值,还使用其统计误差的值。其动机是降低每一步的量子测量次数:即使对于不精确的能量测量,只要它们的误差由于中心极限定理近似为高斯,该过程也是定义良好的。使用噪声设备模拟器将该算法的结果与其他常用的替代方案进行了比较。
1托马斯·贝叶斯(〜1701-1761)是英国部长和统计学家,他开发了一个相对简单的方程式,以将当前对结果或事件(E;称为先验概率)的信念转换为经过修订的和更新的信念(称为后验概率)(称为后验概率),在遇到一些新的信息后,可以将其视为一种感官标志或信号(s)。结果(即后验概率)是有条件的概率,因为它取决于(即条件为基础)新信息(即给出e或符号e | s)。尽管大多数资源使用比例呈现了贝叶斯定理的计算,但贝叶斯却没有,并且使用频率可以简单地理解数学(例如,Gigerenzer&Hoffrage,1995)。要计算更新的条件概率,人们需要知道在信号(E&S)存在下发生结果或事件的频率以及信号自然显示的频率。使用这两个信息,后验概率仅为E&S /S。在任何一天,一个人的信心(即先前的概率)大约为10%(即3 / 〜30)。但是,如果那天多云,它的信心会下雨(后概率,e | S)为33%(即3 /9)。
在早期剂量发现试验中,最佳剂量组合的鉴定,由于精确估算了估算许多参数之间的权衡,以相当估算可观的非单调剂量反应表面所需的许多参数,以及在早期试验中的小样本量。 在个性化剂量发现的背景下,这种困难更为相关,在这种情况下,耐心特征用于识别量身定制的最佳剂量组合。 为了克服这些挑战,我们提出使用贝叶斯优化来确定标准(“全部尺寸拟合”)和个性化的多代理剂量验证试验的最佳剂量组合。 贝叶斯优化是一种估计昂贵评估目标函数的全球最佳功能的方法。 客观函数通过替代模型(通常是高斯过程)与连续设计策略配对,可以通过采集函数选择下一点。 这项工作是由行业赞助的问题激发的,在该问题中的重点是在最小的毒性中优化双重药物疗法。 为了比较在此设置下的标准和个性化方法的性能,对各种情况进行了模拟研究。 我们的研究得出结论,在存在异质性的情况下,采用个性化方法是非常有益的。鉴定,由于精确估算了估算许多参数之间的权衡,以相当估算可观的非单调剂量反应表面所需的许多参数,以及在早期试验中的小样本量。在个性化剂量发现的背景下,这种困难更为相关,在这种情况下,耐心特征用于识别量身定制的最佳剂量组合。为了克服这些挑战,我们提出使用贝叶斯优化来确定标准(“全部尺寸拟合”)和个性化的多代理剂量验证试验的最佳剂量组合。贝叶斯优化是一种估计昂贵评估目标函数的全球最佳功能的方法。客观函数通过替代模型(通常是高斯过程)与连续设计策略配对,可以通过采集函数选择下一点。这项工作是由行业赞助的问题激发的,在该问题中的重点是在最小的毒性中优化双重药物疗法。为了比较在此设置下的标准和个性化方法的性能,对各种情况进行了模拟研究。我们的研究得出结论,在存在异质性的情况下,采用个性化方法是非常有益的。
添加剂制造(AM)技术由于能够快速生产,原型和自定义设计而越来越多地在各种应用领域中采用。AM技术在核材料方面有明显的机会,包括加速制造过程和成本降低。在爱达荷州国家实验室(INL)的多个物理学面向对象的模拟环境(MOOSE)中,正在开发AM过程的高层建模和模拟(M&S),以支持AM过程优化并提供对所涉及的各种物理相互作用的基本了解。在本文中,我们采用贝叶斯逆不确定性定量(UQ)来量化AM基于驼鹿的熔体模型中的输入不确定性。逆UQ是成型量化输入不确定性的过程,同时保持模型预测与测量数据一致。逆UQ过程考虑了模型,代码和数据的不可能,而同时表征输入参数中不确定的分布,而不是仅提供最佳位点估计值。我们使用熔体池几何形状(长度和深度)的测量数据来量化多个熔体池模型参数中的不确定性。模拟结果与实验数据的一致性提高了。可以使用所得参数不确定性来代替未来的不确定性,敏感性和验证研究中的专家意见。
糖尿病是一种持久的代谢疾病,这是由于血糖水平升高而导致的,这是由于体内胰岛素的不良产生或对体内胰岛素的无效利用而产生的。印度通常被标记为“世界糖尿病之都”,这是由于这种情况的广泛流行。根据国际糖尿病联合会报道,在2021年9月最新的作者最新知识最新的最新知识更新,据报道,印度约有7700万成年人受到糖尿病的影响。由于隐藏的早期症状,许多糖尿病患者无法诊断,导致治疗延迟。虽然已经利用计算智能方法来提高预测率,但这些方法的显着部分缺乏可解释性,这主要是由于它们固有的黑匣子性质。规则提取经常用于阐明机器学习算法固有的不透明性质。此外,为了解决黑匣子性质,使用了一种基于加权贝叶斯关联规则挖掘的强大规则的方法,以便提取的诊断糖尿病等疾病的提取规则可以非常透明,并且可以由临床专家易于分析,从而增强可解释性。使用UCI机器学习存储库来构建WBBN模型,证明了95.8%的性能精度。
作为经验的规则,能源效率是所有能量过渡的“第一个燃料”。能源效率已成为由于气候变化,经济发展,能源价格波动,技术无关以及对可再生能源的需求不断增长的许多工业的关键问题之一(Yanmaz等,2018)。因此,能源最终用户一直在寻找新的方法来管理和监视其能源消耗。因此,能源服务公司(ESCO)概念是在1980年代初在北美建立的(Oke&Akman,2010年)。与这一发展平行的是,欧盟(EU)始终愿意并开创了能源效率,ESCOS已从1980年代末到1990年代初开始运作(Marino等,2011)。尤其是在指令之后,欧洲议会的2006/32/EC和2006年4月5日的理事会上的能源