摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*、M. Ferri1,b、L. Belsito1,c、D. Marini1,d、M. Zielinski2,e、F. La Via3,f 和 A. Roncaglia1,g
本文所含信息仅供参考,如有更改,恕不另行通知。尽管在编写本文档时已采取一切预防措施,但其中可能包含技术上的不准确之处、遗漏之处和印刷错误,AMD 没有义务更新或以其他方式更正此信息。Advanced Micro Devices, Inc. 对本文档内容的准确性或完整性不作任何陈述或保证,并且不承担任何责任,包括对本文所述 AMD 硬件、软件或其他产品的操作或使用不侵权、适销性或适用性的默示保证。本文档不授予任何知识产权许可,包括默示许可或禁止反言许可。购买或使用 AMD 产品的条款和限制规定在双方签署的协议或 AMD 的标准销售条款和条件中。
探测器、超大样本环境(≈3 2 1.5 m 3 )的定位能力光束线概念 AMP 光束线是一条相干和非相干小角和广角散射((c)-SAXS/WAXS)光束线,用于对真实条件下正在加工或操作的材料进行时间分辨的微束原位/操作研究。AMP 旨在测量材料的结构和动态,跨越从埃到微米的长度尺度,具有微米空间分辨率和几十微秒时间分辨率。其主要特性是能够容纳高达 3×2×1.5 m 3 的大型样本平台和辅助表征技术。这种大样本区域还可用于中等规模样本环境的多设置,能够在不同设置和随附的 X 射线束设置之间自动切换。
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
德国联邦国防军军乐服务部门横向进入者须知 亲爱的音乐家, 1)我们很高兴您有兴趣在德国联邦国防军军乐服务部门工作。您可能对军事音乐家的日常工作有很多疑问。作为一支交响管乐团,该乐团的音乐工作与民间交响乐团有许多相似之处。当然,乐器的排列、演奏的形式,以及军人的身份都有着明显的差别。如果您还没有机会了解军事音乐家的音乐和军事工作日常,我们建议您首先参观您所在地区的音乐团。音乐团的联系方式如下:www.bundeswehr.de/de/organisation/streitkraeftebasis/organisation/streitkraefteamt/zentrum-militaermusik-der-bundeswehr?uri=ci%3Abw.skb_milmus 如果您对未来的工作环境已经有了足够的印象,请与德国联邦国防军职业咨询办公室预约,以启动申请流程。德国联邦国防军职业咨询电话热线 => 0800 9800880 德国联邦国防军职业咨询在线预约 => www.bundeswehrkarriere.de 如果您想先“幕后”看看,您可以选择在您所在地区的德国联邦国防军音乐团实习。在职业咨询办公室,你向德国联邦国防军的职业顾问解释说,你想申请所谓的“横向进入德国联邦国防军军乐服务队带剑结士官的职业生涯”。通常,职业顾问会根据您的大学学位尝试让您对德国联邦国防军的其他职位产生兴趣(部队军官、德国联邦国防军行政部门公务员等)。由于您想在德国联邦国防军的音乐团中担任管弦乐演奏员,因此您应该只申请德国联邦国防军军乐部门的剑尾士官职业。职业顾问将与您一起填写申请表。请在此申请表内附上您的出生证明、表格形式的简历、两张护照照片、学校和大学证书的复印件以及您以前的就业推荐信和就业证明。您的职业顾问将接受您的完整申请。在接下来的四个月内,您应该会收到德国联邦国防军职业中心发来的军事能力倾向测试和音乐中士考试的邀请。如果您没有收到信件,请联系您的职业顾问。或拨打德国联邦国防军人事管理办公室的以下电话号码:0221 / 9571 3544。军事能力评估 军事能力评估将在杜塞尔多夫的德国联邦国防军职业中心进行,通常需要一到两天的时间。适用性评估由以下部分组成:
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2023 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。DS0494-EN-03-2023
广义的量子测量值超出了希尔伯特空间中正式基础的投影的教科书概念。它们不仅具有基本相关性,而且在量子信息任务中也起着重要作用。但是,在没有假定量子设备的特征的情况下,高度要求证明实验会收获通过广义测量所能获得的优势,尤其是超出最简单的Qubit,最简单的Qubit,系统。在这里,我们表明,多派梁插槽允许在较高维度中稳健地实现高质量的广义示意。使用最先进的多核光纤技术,我们在四维希尔伯特空间中实施了七个结果的广义测量,其忠诚度为99.7%。我们提出了一项实用的量子通信任务,并证明了一个成功率,该成功率无法在任何可能的量子协议中基于基于同一维度量子消息的标准投影测量值模拟。我们的方法与现代光子平台兼容,展示了忠实且高质量实施的途径。
清洁产品最终进入废水处理厂的流出物(Tanabe 和 Kawata 2008)。由于它不易被生物降解、吸附或被传统氧化剂氧化,因此很难处理(Otto 和 Nagaraja 2007)。高级氧化工艺(AOP)通常用于去除 1,4-二氧六环(Otto 和 Nagaraja 2007;McElroy 等人 2019)。在这些过程中,会原位生成强氧化羟基自由基(·OH)来降解污染物。这些技术包括紫外高级氧化(UVAOP),其中紫外光用于将过氧化氢(H 2 O 2 )光解为·OH。同样,紫外氯 AOP 通过光解游离氯生成·OH。臭氧 (O3) 可用作水和废水处理中的氧化剂和消毒剂,通过其自催化分解和与有机物的反应生成·OH,而有机物也可以被 H2O2 催化 (von Sonntag & von Gunten 2012;Stefan 2018)。在这些过程中,通常需要大量的化学药剂。虽然对 AOP 在废水废水中去除 1,4-二氧六环的研究有限,但臭氧通常被认为是废水废水中最好的 AOP。这是因为高含量的溶解有机物可以清除羟基自由基,而且紫外线的透射率低 (Katsoyiannis 等人 2011;Lee 等人 2016;Sgroi 等人 2021)。然而,如果存在溴化物 (Br),臭氧 (和 UV-Cl 2 ) 可以形成溴酸盐,这是一种受监管的消毒副产物。电子束处理使用加速电子通过水的辐射分解产生大量的氧化和还原自由基,如公式 (1) 所示 ( Cooper 等人 1992 年; Wang 等人 2016 年):
™或®确定的所有商标均为美国的商标或注册商标,可以在其他国家注册。所有产品名称,商标和注册商标都是其各自所有者的财产。本文档仅用于计划目的,不打算修改或补充与Commscope产品或服务有关的任何规格或保证。