算法•假设:角度效应是PBPM 1。在pbpm(ph_ref)2。阅读pbpm数据(ph_mon)3。计算ph_ref和ph_mon 4。使用源点和BPM和PBPM之间的距离,调整电子束以将光子束对参考位置进行重新检查。5。重复步骤2至4
光束线的设计旨在支持各种基础物理实验,这些实验旨在解答有关宇宙中物质的性质和存在的问题,并由同行评审分配访问权限和时间。由于这类实验几乎总是受到统计限制,因此光束线的设计旨在提供最高强度的脉冲中子,尤其是冷中子,同时还提供充足的地面空间来安装实验。
探测器、超大样本环境(≈3 2 1.5 m 3 )的定位能力光束线概念 AMP 光束线是一条相干和非相干小角和广角散射((c)-SAXS/WAXS)光束线,用于对真实条件下正在加工或操作的材料进行时间分辨的微束原位/操作研究。AMP 旨在测量材料的结构和动态,跨越从埃到微米的长度尺度,具有微米空间分辨率和几十微秒时间分辨率。其主要特性是能够容纳高达 3×2×1.5 m 3 的大型样本平台和辅助表征技术。这种大样本区域还可用于中等规模样本环境的多设置,能够在不同设置和随附的 X 射线束设置之间自动切换。
研究光介导的过程的追求驱动了能够产生X射线辐射脉冲的设施的发展(Ponseca等人。,2017年; Kranz&Wachtler,2021年; Chergui&Collet,2017年; Milne等。,2014年)。激光驱动的来源可以在各种能量中可靠地产生这种辐射,并将紧凑型设置的好处和高水平的整合性在多功能实验室中以负担得起的成本(与其他大型设施相比)相结合。对于超快泵 - 探针实验,光束生成的全光方法在两个或更多光束之间提供了出色的同步。这样的设施具有例如高级形状的泵脉冲(Assion等,1998;布鲁格曼等人。,2006年)以及不同波长范围中探针的内在性能,例如可见的,Terahertz和X射线,使用相同的泵。此处描述的来源安装在模块化的X射线光谱端站内,有可能促使使用多种互补方法进行全面研究[见De Roche等。(2003),Naumova等。 (2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2003),Naumova等。(2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2018),Dicke等。(2018),Kunnus等。(2020)和Kjaer等。(2019)示例]。激光驱动的等离子体X射线源(PXS)(Mallozzi等,1974年; Turcu&Dance,1999年; Benesch等。,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。,2007年; Korn等。,2002年; Zamponi等。,2009年; Uhlig等。,2013年; Weisshaupt等人。,2014年; Afshari等。,2020)。这会导致表面原子和血浆在陡峭的梯度处的电离(Fullagar,Harbst等人。,2007年; Chen等。,2001年; Brunel,