•男性:雄鹿•女性:DOE•年轻:幼崽•发情:每4天自发循环,持续8-26小时。产后发情(分娩后约24小时。泌乳结束时发情的复发。• Gestation : 15 days • Birth weight : 2g • Size of litter : 5 - 10 on average • Stage of development at birth : Young are born blind and hairless • Eyes open : 10 - 15 days • Weaning age : 21 days • Breeding Age : Female 6 - 10 weeks Male 10 – 14 weeks • Adult weight : 100 – 200 g • Breeding life of female : 12 months • Breeding life of male : 18 months • Life expectancy : 1.5-2 years on average • Rectal temperature: 38 °C冬眠•心率:276-425节每分钟•呼吸速率:每分钟100 - 250次呼吸•叙利亚仓鼠的侧面有双侧色素皮脂腺,在男性中更为突出。
基于晶格的签名方案[8]和Falcon [15]已被NIST [22]选择为量子后加密后的第一个标准。但是,这种量子后的安全性是有代价的:Pub-lit键的大小和Dilithium and Falcon的签名的大小明显大于ECDSA和RSA。拥有更有效的量词后签名方案和/或基于不同的假设是有用的:这激发了NIST在2022年打开呼吁其他数字签名建议[21]。在该电话中,Feussner和Semaev提交了基于晶格的签名方案EHTV3V4 [12],该方案目前在修复后仍未破裂。Very recently [13], the same authors proposed a very different and much more efficient scheme, called DEFI, on the NIST pqc mailing list: with a 800-byte public key and a 432-byte signature, DEFI is more efficient than both Dilithium and Falcon, and beats all additional NIST submissions except for SQISign in (public key + sig- nature) size [23].即使实施了不优化的实施,DEFI的签名和验证时间似乎也与所有提议的签名相比有利[5]。defi是从多元加密和基于晶格的加密术借用的特殊方案:其安全性是基于求解整数上二次方程的硬度的硬度,以及Z [x] /(x 64 + 1)等多项式环R等多项式环R。以其一般形式,已知这个问题是NP-HARD,因此Defi的作者在最坏的情况下认为它很难,但是Defi使用了问题的特殊实例,这可能更容易解决。因为r是多项式更确切地说,DEFI私钥是通过defi公共密钥确定的二次方程式小型系统的解决方案。
Steven J. Brams,纽约大学 摘要 Catch-Up 是一个简单的 2 人顺序游戏,其中一个玩家 (A) 首先从自然数集合 {1, 2, 3, …, n } 中选择一个数字。然后另一个玩家 (B) 选择一个或多个数字,其和等于或略大于 A 的数字。然后玩家轮流选择数字,不重复,这样他们的和在每一轮中等于或略大于对手的和——直到所有数字都被选出——最终一个玩家的和等于或超过对手的和,使其成为平局或绝对赢家。与国际象棋或围棋不同,没有发现任何 AI(人工智能)或深度学习程序能够在 Catch-Up 中持续击败对手——比如说,90% 或更多的时间——对手在每一轮中随机选择数字,而在国际象棋或围棋中随机移动将是灾难性的。人工智能在其最强的领域——计算和学习——遇到对手了吗? 1. 简介
摘要:这项研究探讨了机器学习策略估算药品协议的适当性,并显示了对四个计算的比较研究:随机森林,梯度增长,长期记忆(LSTM)和自动性综合运动平均值(ARIMA)。现实世界中的药物交易信息用于评估使用测量值的预定计算的先见优先执行,例如残酷绝对误差(MAE),均方误差(MSE)和根残酷平方误差(RMSE)。结果表明,LSTM击败了其他计算,完成了最大的900个MAE,13000的MSE和113.96的RMSE。此外,该研究对不同部门的有先见之明分析和机器学习的后续进展进行了全面调查,计算医疗保健,供应链给药,背部和自然支持性。这些发现强调了进步分析在推动关键决策,优化资产分配以及缓解药品交易中的危险方面的变革潜力。向前迈进,将机器学习驱动的确定模型集成到组织程序中将继续彻底改变制药行业,并为可维护的开发和进步扫清道路。
心脏是一种肌肉,可以将血液和氧气在您的身体周围泵入所有重要器官。它有四个腔室,顶部有两个(右侧和左心房),底部有两个(右心室和左心室)。心脏还具有一个电气系统,它通过心脏发出冲动(节拍),导致其收缩并在体内抽血。每个正常的心跳始于心脏的天然起搏器(中环或SA节点),位于右心房顶部。它穿过两个顶部腔室,并穿过上和下腔之间的小连接(室内或AV节点)。然后,它散布在底部腔室(心室),导致心脏收缩并通过右心室将血液泵入肺部,并通过左心室在体内含氧血液。有时您心脏中的电气系统无法正常工作,导致您的心脏跳动太快或太慢。除颤器可以阻止从心室开始的快速心律。这种快速心律称为心室心动过速或VT。
摘要:先天性完整的心脏阻滞(CCHB)与宫内和产后死亡率高有关。产前检测和管理以及适当的交付计划可以改善CCHB的结果。我们描述了一种罕见的CCHB病例,该病例最初在胎儿超声心动图上注明了胎儿腹水和高级二级心脏块。母亲被认为对抗SSA抗体呈阳性,并且开始用母体类固醇治疗,以逆转胎儿心脏传导异常。然而,胎儿心律通过随访评估而发展为完整的心脏阻滞,并且胎儿在整个怀孕期间的心率不断降低,低胎儿心率为每分钟25次(BPM)。此病例证明了文献中记录的胎儿心室率最低,并说明了罕见疾病过程的严重表现。包括与胎儿超声心动图和胎儿心电图学,产前管理以及在产前检测到的CCHB的胎儿中有关的现有知识,产前评估和胎儿脑电图学,产前管理和交付计划。
一名 66 岁男性因 1 天全身不适、恶心、腹痛和头晕到急诊室就诊。就诊时患者体温 36.5 °C、血压 112/78 mm Hg、心率 112 次/分钟、血氧饱和度 96%(室内空气),呼吸频率正常。患者自诉无过敏,无药物或酒精滥用,目前未使用任何药物或非处方产品。两天前,他接种了第一剂 ChAdOx1 nCOV-19(牛津-阿斯利康)疫苗。患者病史包括意义不明的单克隆丙种球蛋白病(免疫球蛋白 G [IgG] κ )和 2017 年的心脏骤停。当时,他出现全身无力和晕厥发作。由于他的血红蛋白水平升高(210 [正常 130-180] g/L),怀疑是红细胞增多症,并进行了放血疗法。不久之后,患者出现低血压,并进入无脉性电活动停止状态。他被成功复苏,恢复正常,五周后出院回家。他的甲型流感检测结果为阳性,休克归因于病毒感染。本次就诊时,患者的血红蛋白水平显著升高至 224 g/L。他有低白蛋白血症(28 [正常 34-55] g/L)和肌酐水平升高(133 [正常 62-115] μ mol/L)。凝血参数、心脏和肝酶、C 反应蛋白和降钙素原均正常。SARS-CoV-2 和扩展呼吸道病毒检测结果均为阴性。胸部 X 光检查、腹部计算机断层扫描、心电图和创伤超声心动图重点评估均未发现异常(表 1 和表 2)。尽管感染的可能性不大,但我们还是开始静脉输液,并采用哌拉西林 - 他唑巴坦进行经验性治疗。12 小时后,患者已接受超过 6 L 的液体,但血压已降至 93/60 mm Hg,心率为 125 次/分钟,红细胞增多症持续存在(血红蛋白 223 g/L)。我们将患者送入重症监护病房 (ICU)。由于没有其他导致休克的原因,我们诊断为全身毛细血管渗漏综合征 (SCLS)。
呼吸短促、咳嗽并伴有白痰 2 天。患者的儿子一直在监测她的氧气状况,结果显示她的血氧饱和度 (SpO2) 从基线的 95% 下降到 88%,这促使他带她去了急诊室。到达时,患者的 SpO2 为 82%,心率为每分钟 101 次。值得注意的是,她没有发热,体温为 36.6 摄氏度。体检时发现患者喘息且呼吸困难。她有 COPD 病史,使用 Symbicort(一种吸入性皮质类固醇)、Spiriva(一种吸入性毒蕈碱拮抗剂)和沙丁胺醇治疗,并且她没有使用任何家庭氧气。她的其他既往病史包括口服直接抗凝剂后阵发性心房颤动、高血压、高脂血症和阻塞性睡眠呼吸暂停。当被问及时,患者否认有任何发烧、发冷、恶心、呕吐、腹泻或喉咙痛。她还否认最近接触或接触过 COVID-19 患者。她说她不吸烟,家里也没有人吸烟,她
Continuous Systems, Vibrations of strings, bars, shafts and beams, discretised models of continuous systems and their solutions using Rayleigh – Ritz method, Mode summation method, Unit 4 Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations: Rayleigh, Rayleigh-Ritz and Dunkerley's methods, matrix iteration method for Eigen-value calculations, Stodola method, Holzer's method, Unit 5 Plane and Spherical acoustic waves, Transmission Phenomena, transmission from one fluid medium to another, normal incidence, reflection at the surface of a solid, standing wave patterns, transmission through three media, Resonators and filters, Absorption of sound waves in fluids : Phase log between pressure and condensation, viscous absorption of plane waves, heat conduction as a source of acoustic attenuation,第6单元的语音,听力和噪音,语音机制,语音的声音输出,耳朵解剖学,听力机制,耳朵的阈值,响度,音高和音色,节拍,听觉谐波和组合音调,用纯音,掩盖噪声掩盖。
Continuous Systems, Vibrations of strings, bars, shafts and beams, discretised models of continuous systems and their solutions using Rayleigh – Ritz method, Mode summation method, Unit 4 Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations: Rayleigh, Rayleigh-Ritz and Dunkerley's methods, matrix iteration method for Eigen-value calculations, Stodola method, Holzer's method, Unit 5 Plane and Spherical acoustic waves, Transmission Phenomena, transmission from one fluid medium to another, normal incidence, reflection at the surface of a solid, standing wave patterns, transmission through three media, Resonators and filters, Absorption of sound waves in fluids : Phase log between pressure and condensation, viscous absorption of plane waves, heat conduction as a source of acoustic attenuation,第6单元的语音,听力和噪音,语音机制,语音的声音输出,耳朵解剖学,听力机制,耳朵的阈值,响度,音高和音色,节拍,听觉谐波和组合音调,用纯音,掩盖噪声掩盖。