根据《苏格兰信息自由法》第 17 条,如果组织不持有该信息,则无需提供该信息。NHS 苏格兰国家服务中心不持有该信息。我建议您联系可能在当地持有该信息的各个卫生委员会。我相信您会从这些信息中得到帮助,如果您需要任何进一步的信息,请随时与我联系。如果您对我们处理您的请求的任何方面不满意,您可以向我们提出申诉,要求我们审查对您的请求的处理。请写信给
预防措施:尽管床符合电磁兼容性,但某些设备可能会改变其功能的方式,在这种情况下,必须在距离上使用或根本不使用它们。警告:床是一种电磁设备,需要有关电磁兼容性的特殊预防措施。必须根据本技术手册中提供的电磁兼容性信息安装并将其用于使用。警告:除了制造商指定或提供的配件,换能器和电缆外,还可能导致电磁排放增加或设备免疫力降低,并可能导致操作不当。当在下面指定的值的极限内受到电磁干扰时,床不会自动移动:
煤层甲烷是重要的能源,在过去的二十年中一直在迅速发展。此外,印度成为基于天然气的经济的承诺更加强调增加国内天然气的生产。因此,可以从煤层气体中利用巨大的潜力。井眼稳定性是任何井生命周期的关键因素,尤其是在地下存在煤层形成的地方,因为煤层面临一些挑战,主要是因为煤的断裂梯度低,并且煤层中存在几个天然裂缝网络。本综述论文概述了影响不同类型的井眼建模技术的井眼稳定性的因素,即分析模型,波利亚弹性模型,它是最广泛使用的技术,并以合理的准确性提供了围绕模型和其他数值模型的元素,并以合理的准确性提供了诸如Hydo-Hydro-Hydro-Mechanical(Themo-Hydro)和其他元素的限制元素。垂直和水平井的情况,因为这是计算断裂梯度的关键标准。中,THM耦合方法是最先进的建模技术,当存在高热应力时使用。之后,它讨论了用于在油基泥浆(例如油性泥浆),可降解聚合物基于聚合物的钻孔液(具有最小地层损伤和具有泡沫的基于泡沫的钻孔液)中使用的不同钻孔液,具有有效的切割能力。此外,它们的局限性和优势以及对钻孔液引起的渗透性损伤和拉伸裂缝的影响。因此,对CBM提取过程的技术改进进行了整体审查。
CDC最近根据Covid-19的Delta变体在K-12学校的教师,学生和员工中更新了有关室内面具的指导(2021年8月)。这种菌株更具传染性,即使在接种疫苗的个体中也会增加传播。根据CDC指导,美国儿科学院和纽约州卫生部(2021年8月27日,Mask Guidance P-12学校),我们的学校将全天遵守通用面具的室内掩护要求,全天在室内为所有老师,教职员工,学生和访客均遵守P-12学校的访问量和社区传播水平。在学校室内的通用掩盖室室内需要教师,教职员工,学生和访客两岁以上,并且能够在很大程度上可以在很大程度上遮盖遮盖/口罩的医疗面孔。还将在需要时为学生提供口罩休息。我们将练习一致和纠正口罩的使用(遮盖鼻子和嘴巴)来保护所有个人。我们的公共汽车运输的学生将在校车上戴口罩,并遵循DOH Transportation指南。除了销售手套外,我们的学校还将为学生和员工提供足够的口罩。员工已经通过CDC网络研讨会培训了有关手套和面具的安全,拆除和处置。
本作品由美国国家可再生能源实验室根据合同号 DE-AC36-08GO28308 为美国能源部 (DOE) 撰写,该实验室由可持续能源联盟有限责任公司运营。美国能源部能源效率与可再生能源高级材料与制造技术办公室提供资金。本海报不包含任何专有、机密或其他受限制信息。文章中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;出版商在接受发表文章时,即承认美国政府保留非独占的、已付费的、不可撤销的全球许可,可以为美国政府的目的出版或复制本作品的已出版形式,或允许他人这样做。我们特别感谢我们的合作者:壳牌、标准锂业和科罗拉多矿业学院的 Tzahi Cath 教授。
Ayrshire and Arran - foi@aapct.scot.nhs.uk Borders – foi.enquiries@borders.scot.nhs.uk Dumfries and Galloway – dg.feedback2@nhs.scot Fife – fife.foirequestfife@nhs.scot Forth Valley – fv.freedomofinformation@nhs.scot Grampian – gram.foi@nhs.scot Greater Glasgow & Clyde – foi@ggc.scot.nhs.uk Highland – nhsh.foirequestshighland@nhs.scot Lanarkshire – foi@lanarkshire.scot.nhs.uk Lothian – foi@nhslothian.scot.nhs.uk Orkney – ORK.FOIrequests@nhs.scot Shetland – shet.foi@nhs.scot Tayside – tay.informationgovernance@nhs.scot Western Isles – wi.foi-requests@nhs.scot NHS24 – foi@nhs24.scot.nhs.uk NHS National Waiting Times Centre – FOI@gjnh.scot.nhs.uk
集中太阳能(CSP)和钙环(CAL)之间的整合正在考虑在可再生能源的大股份的角度考虑,以平滑不可匹配的能量输入的可变性。这项研究的范围是通过在适用于CAL-CSP集成的现实过程条件下在流化床中进行专门的实验运动来研究热化学能量储存(TCE)的CAL过程。通过测量沿迭代的钙化/碳化循环的Ca碳化程度,已经评估了基于石灰石的吸附剂的化学失活,这与转换选定阶段的物理化学炭化相关。经过审查的特性是层粒子的分布,块状密度以及床固体的粒径,密度和孔隙率。也评估了能源储能密度的可达到的值。实验运动的一个了不起的发现是在与二氧化硅砂一起加工时,石灰石的显着停用了。在过程温度下,CAO与二氧化硅砂成分的化学相互作用已被仔细检查,以造成反应性CAO对CO 2摄取的损失。颗粒密度数据的后处理以及N 2入口的孔隙法分析以及定量和定性XRD分析,这表明沙/石灰相互作用可促进总和反应性吸附的孔隙率的强烈降低,而反应性则是反应性的。基于密度的分类,用于评估碳化步骤后分离和未转化的石灰石颗粒,以提高过程效率的目的,通过避免通过工厂的未反应颗粒的流循环流循环。为此,在相关过程温度下每个反应步骤后,已经测量了钙化颗粒和碳酸颗粒的最小流体速度。
本论文以汉堡工业大学工程热力学研究所的科学工作为基础,该研究所与西门子歌美飒可再生能源和汉堡能源有限公司合作开展了联合研究项目未来能源解决方案。该项目由德国第六能源研究计划资助,对此我深表感谢。参与该项目对我来说是一次巨大的收获,我非常感谢有趣的见解和讨论,以及所有项目合作伙伴通过提供背景信息和测量数据的支持。我非常感谢我的导师 Prof. Dr.-Ing. Gerhard Schmitz 的支持、信任和鼓励,他给予我充分的自由,让我在日常工作中全身心投入研究领域,并在研究所建立了良好的工作条件。我还要感谢 Prof. Dr.-Ing Stefan Will 担任论文的第二审稿人,以及 Prof. Dr.-Ing. Alfons Kather 担任考试委员会主席。研究所的所有同事都为良好的工作氛围做出了贡献,我感谢他们的支持、有趣的讨论和我们在休息时一起度过的美好时光。我特别要感谢 Lisa Andresen 为该项目所做的前期工作,以及她鼓励我加入该项目。许多学生通过论文或担任研究助理为研究项目做出了贡献。他们的承诺、想法和反馈都值得高度赞赏。最后但并非最不重要的是,我要感谢我的妻子 Jasmin,感谢她在我撰写论文期间给予的大力支持,感谢她让我们的生活如此美好,还要感谢我们的两个儿子 Enno 和 Jonas,他们每天都用自己的快乐和对未来的信心激励着我们。
COVID-19 大流行已被视为全球最大的卫生危机之一。在巴西的北里奥格兰德州,RegulaRN 平台是用于管理 COVID-19 患者床位的卫生信息系统。本文探索了使用 RegulaRN 数据的机器学习和深度学习技术,以确定预测住院患者结果的最佳模型和参数。共分析了 25,366 条 COVID-19 患者的床位规定。分析的数据来自 2020 年 4 月至 2022 年 8 月的 RegulaRN 平台数据库。从这些数据中,从 20 个可用特征中选择了 9 个最相关的特征,并排除了空白或不确定的数据。接下来是以下步骤:数据预处理、数据库平衡、训练和测试。结果显示,使用随机梯度下降优化器的多层感知器模型在准确度(84.01%)、精确度(79.57%)和 F1 分数(81.00%)方面表现更好。通过均方根传播,召回率 (84.67%)、特异性 (84.67%) 和 ROC-AUC (91.6%) 达到了最佳结果。本研究比较了不同的机器学习和深度学习计算方法,其目标是对来自 RegulaRN 平台的 COVID-19 患者床位管理数据进行分类。研究结果使我们能够确定最佳模型,以帮助卫生专业人员管理 COVID-19 患者的床位。本文的科学发现表明,通过数字健康解决方案应用的计算方法可以在公共卫生危机情况下协助医疗监管机构和政府机构做出决策。