摘要 - 伪注射攻击对数字系统的安全性,损害完整性和暴露脆弱性构成了重大威胁。本文探讨了在Lenstra攻击的背景下,探讨了故障技术,特别是电压故障,这是对RSA-CRT的Bellcore攻击的延伸,该攻击已经存在了数十年。重点是微芯片CEC 1702微控制器的加密加速器。该研究采用Chipwhisperer工具包对RSA-CRT的软件和硬件实施进行故障注入攻击。结果揭示了商业产生的微芯片CEC 1702微芯托机中的脆弱性,突出了与故障注射攻击有关的潜在安全风险。索引术语 - 伪造分析,铃铛攻击,Lenstra的攻击,CEC 1702,Chipwhisperer
振动台位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可选择运行需要采样频率低于 120Hz 的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可选择根据 ANSI S2.62-2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
振动器位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可以选择运行需要低于 120Hz 采样频率的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可以选择根据 ANSI S2.62- 2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
自 2009 年至今,Don 担任亚利桑那大学菲尼克斯医学院基础医学系和图森化学与环境工程系的研究教授。加入亚利桑那大学之前,Don 于 2003 年至 2009 年担任亚利桑那州立大学坦佩分校生物设计研究所材料学院和应用纳米生物科学中心的研究教授;1997 年至 2003 年曾担任摩托罗拉技术人员并担任首席研究科学家;1993 年至 1997 年是 Red Bank 研究公司(摩托罗拉和 Bellcore 的合资企业)的创始成员。1984 年至 1993 年间,Don 担任凯斯电化学科学中心 (CCES) 的高级研究员、凯斯西储大学讲师和克利夫兰州立大学讲师。
任职(续) 贝尔通信研究 (Bellcore)(1999 – 2003 年):高级研究科学家;(1995 – 1999 年):研究科学家:数学和密码学研究组,应用研究。 伯克利(1992 年秋季 – 1995 年 8 月):NSF 数学科学博士后研究员。主持人:Manuel Blum 教授。 IBM TJ Watson 研究中心,纽约霍桑。(1992 年 7 月 – 8 月);(1991 年 6 月 – 9 月);(1990 年 7 月 – 9 月):暑期实习研究职位:分布式算法、密码学。 AT&T 贝尔实验室,新泽西州默里山。(1990 年 5 月 – 7 月)。数学研究中心。暑期实习研究职位:密码学、分布式和并行算法。 Index Technology Corporation,马萨诸塞州剑桥。(1987 – 1989 年)。研究工程师、产品规划、架构和研究组:算法设计。
[120] 10 月 26 日 SPIE 无线个人通信技术和服务会议,受邀在会议“ PCS 数据和多媒体应用 ”上发表论文,宾夕法尼亚州费城。 [121] 10 月 23 日 SPIE 信息存储编码和信号处理会议,受邀在特别会议“通道、模型和识别”上发表论文,宾夕法尼亚州费城。 [122] 10 月 19 日研究生研讨会,“数字视频”,卡内基梅隆大学电气和计算机工程系,宾夕法尼亚州匹兹堡。 [123] 8 月 15 日美国统计学会年会,“统计和海洋科学”特别会议组织者和主席,佛罗里达州奥兰多。 [124] 8 月 14 日 NRL 斯坦尼斯航天中心,“数据同化的有效算法”,受邀发言人,密西西比州斯坦尼斯。 [125] 7 月 11 日 Bellcore,“生成视频”,受邀发言人。新泽西州雷德班克斯。[126] 7 月 10 日,大西洋航空电子公司 (AAEC),“使用 Gabor/Wavelet 和 Zak 变换进行检测和分类”,特邀发言人。马里兰州格林贝尔特。[127] 3 月 15-17 日,IEEE 自适应传感器阵列处理研讨会,“海洋声学层析成像中的射线路径识别”,特邀发言人,麻省理工学院林肯实验室,马萨诸塞州列克星敦。
A AL ATM 适配层 ACS 高级蜂窝系统 ACI † 相邻信道干扰 ADSL 非对称数字用户线 AGC † 自动增益控制 ALT 备用本地传输公司 AM † 幅度调制 AMI 交替传号反转 AMPS 高级移动电话服务 AMTA 美国移动电信协会 ANSI 美国国家标准协会 AP (CO) 应用处理器 APC 美国个人通信 ARPANET 高级研究计划机构网络 ART † 幅度无线电传输 ARQ 自动重复请求 ASCII 美国信息交换标准代码 ASIC 专用集成电路 ASP 平均销售价格 ATG † 空对地 ATM † 异步传输模式 AWG 美国线规 AWGN † 加性高斯白噪声 B -ISDN † 宽带 ISDN BBS † 公告板系统 BCC 块校验字符 BELLCORE 贝尔通信研究 BER 误码率 BFSK 二进制频移键控 BPDU † 突发协议数据单元 BPF † 带通滤波器BISYNC 二进制同步通信 BOC † 贝尔运营公司 BPS † 比特每秒 BPSK 二进制相移键控 BRI 基本速率接口 BSS † 广播卫星服务 BTA 基本贸易区 C -NETz 德国 C 系统 C/I 载波干扰比 CAD † 计算机辅助设计 CAGR 复合年增长率 CAI 通用空中接口 CAM † 计算机辅助制造 CAP 竞争性接入提供商 CAP(HDSL)无载波 AM/PM CBEMA † 计算机和商业设备
SM-465-5 ALPHA 松香助焊剂 800 (RF-800) 免清洗助焊剂 ALPHA RF-800 为免清洗助焊剂提供了最宽的工艺窗口,固体含量低于 5%。ALPHA RF-800 旨在提供出色的焊接效果(低缺陷率),即使要焊接的表面(元件引线和焊盘)可焊性不高也是如此。RF800 特别适用于用有机或松香/树脂涂层保护的裸铜板以及涂有锡铅的 PCB。ALPHA RF-800 可成功用于锡铅和无铅应用。一般说明 ALPHA RF-800 是一种高活性、低固体、免清洗助焊剂。它采用专有活化剂系统配制而成。添加少量松香以增强热稳定性。活化剂旨在为低固体、免清洗助焊剂提供最宽的操作窗口,同时保持高水平的长期电气可靠性。波峰焊后,ALPHA RF-800 留下少量非粘性残留物,在引脚测试中很容易穿透。特性和优点 • 高活性,焊接效果极佳,缺陷率低。 • 非粘性残留物含量低,可减少对引脚测试的干扰。 • 无需清洁,可降低运营成本。 • 降低阻焊层和焊料之间的表面张力,从而显着降低焊球频率。 • 符合 Bellcore 对长期电气可靠性的要求。应用指南准备 - 为了保持一致的销售
可靠性理论的基础工作为根据部件可靠性知识计算复杂系统可靠性的评估以及从相对不可靠的部件构建可靠系统建立了数学基础。如今,可靠性和安全性分析已成为每个技术系统设计或调查过程的重要组成部分。要解决的问题可分为两大类:1. 危险工厂的可靠性和安全性分析,比较其可靠性和安全性参数的值,提高工厂的安全水平等; 2. 预测即将建造的新工厂的可靠性和安全性参数值。因此,有必要获得有关设备功能、事故及其后果、维护操作及其成本的完整而准确的数据,这些数据可用于解决上述分类中第一类问题。最好的情况是,这些信息是从同一台设备(特定故障数据)或类似条件下的类似设备收集的。对于第二组问题,我们必须使用计划实施的设备信息,结合专家对新设备可靠性参数的判断,或者使用标准值或标准可靠性模型(例如MIL-217 或 Bellcore)。因此,需要从安装和操作的现场记录中收集与所有类型组件相关的可靠性数据,以便我们分析、比较或预测复杂系统的可靠性水平。我们可以定义至少三类可靠性数据库用户 [1]: - 风险和可靠性分析师,用于分析和预测复杂系统的可靠性; - 维护工程师,用于测量和优化维护性能; - 组件设计人员,用于分析和优化组件性能。所有这些专家都需要不同类型的数据。风险分析师需要计算系统可用性或任务成功或失败的概率。为此,他需要了解组件的可用性和故障率。如果停机时间已正确包含在数据库中,则可以根据按需故障估计可用性。维护工程师需要测量维护性能。操作数据将维护的影响和组件的固有可靠性混为一谈。他还想知道,如果不进行维护,组件的故障行为会是怎样的。组件设计人员主要对揭示设计弱点的故障机制感兴趣。因此,他有兴趣根据故障机制区分故障模式。如果无法做到这一点,则使用工程知识从其他信息中推断故障机制。
784-1 托管现场以太网交换机。784-1.1 说明。为智能交通系统 (ITS) 项目配备和安装强化的设备级托管现场以太网交换机 (MFES)。确保 MFES 以每秒 100 兆比特的传输速率从远程 ITS 设备安装位置到 ITS 网络主干互连点提供线速快速以太网连接。仅使用符合这些最低规格要求且列在部门批准产品清单 (APL) 上的设备和组件。784-1.2 材料:784-1.2.1 一般要求:确保 ITS 网络管理员能够单独管理每个 MFES 并作为一个组进行交换机配置、性能监控和故障排除。确保 MFES 包含第 2 层以上功能,包括 QoS、IGMP、速率限制、安全过滤和常规管理。确保提供的 MFES 与 ITS 主干以太网网络接口完全兼容且可互操作,并且 MFES 支持半双工和全双工以太网通信。提供 MFES,该 MFES 提供 99.999% 无错误操作,并且符合电子工业联盟 (EIA) 以太网数据通信要求,使用单模光纤传输介质和 5E 类铜传输介质。为每个远程 ITS 现场设备提供交换以太网连接。确保 MFES 的最小平均故障间隔时间 (MTBF) 为 10 年或 87,600 小时,这是使用 Bellcore/Telcordia SR-332 可靠性预测标准计算得出的。784-1.2.2 网络标准:确保 MFES 符合所有适用于以太网通信的 IEEE 网络标准,包括但不限于:1.与快速生成树协议 (RSTP) 一起使用的媒体访问控制 (MAC) 桥的 IEEE 802.1D 标准。2.基于端口的虚拟局域网 (VLAN) 的 IEEE 802.1Q 标准。3.服务质量 (QoS) 的 IEEE 802.1P 标准。4.局域网 (LAN) 和城域网 (MAN) 接入和物理层规范的 IEEE 802.3 标准。5.IEEE 802.3u 补充标准,涉及 100 Base TX/100 Base FX。6.IEEE 802.3x 标准,涉及全双工操作的流量控制。784-1.2.3 光纤端口:确保所有光纤链路端口在单模式下以 1,310 或 1,550 纳米运行。确保光纤端口仅为 ST、SC、LC 或 FC 类型,如计划中或工程师所指定。请勿使用机械传输注册插孔 (MTRJ) 型连接器。提供具有至少两个光纤 100 Base FX 端口的 MFES,能够以每秒 100 兆比特的速度传输数据。确保 MFES 配置了合同文件中详述的端口数量和类型。提供设计用于一对光纤的光纤端口;一根光纤将传输 (TX) 数据,一根光纤将接收 (RX) 数据。