PCIA计算是在D.11-12-018中建立的,最近在D.23-06-006中进行了完善。PCIA是IOU与捆绑服务后的能源成本无动于衷的数量,相当于IOU的PCIA-PCIA-合格投资组合的成本降低了投资组合在给定年内的市场价值。市场价值在d.19-10-001中定义为“以美元计量的估计财务价值,这归因于能源资源的投资组合,目的是计算给定年份的电费无差调整。” 2 D.19-10-001将MPB定义为“与IOU投资组合中三个主要价值来源相关的每单位值(不是总投资组合值)的估计(能源,资源充足和可再生能源)。”作为市场价值总体计算的一部分,将3个MPB乘以相关投资组合量。预测的加法器是旨在减少冷漠量的不确定性的机制,而真正的UP加成器是旨在将实现市场收入与预测价值相结合的机制。
目标:随着全自动驾驶系统(AD; SAE 4级)在美国扩大的乘车服务,我们现在正在接近车辆安全评估史上的拐点。回顾性评估ADS安全影响的过程(如安全带,安全气囊,电子稳定性控制等)可以开始得出统计上可信的结论。ADS安全影响测量需要与“基准”崩溃率进行比较。大多数基准生成的迄今为止的基准都集中在当前的人类驱动舰队上,这使研究人员能够了解引入的ADS技术对当前崩溃记录现状的影响。这项研究旨在通过利用警察报告的撞车事故来解决,更新和扩展现有文献,以便为当前广告部署的多个地理区域产生人类崩溃率。
本文介绍了一个全面的基准测试套件,该套件是针对离线安全增强学习(RL)挑战的全面的,旨在促进培训和部署阶段中安全学习算法的发展和评估。我们的基准套件包含三个包:1)精心制作的安全政策,2)D4RL风格的数据集以及环境包装器,以及3)高质量的离线安全RL基线实施。我们采用有条不紊的数据收集管道,该管道由先进的安全RL算法启动,该管道有助于从机器人控制到自动驾驶的38个流行的安全RL任务中跨38个流行的安全RL任务的不同数据集的生成。我们进一步引入了一系列数据后处理过滤器,能够修改每个数据集的多样性,从而模拟各种数据收集条件。此外,我们还提供了普遍的离线安全RL算法的优雅且可扩展的实现,以加速该领域的研究。通过超过50000个CPU和800 GPU小时计算的广泛实验,我们评估和比较了这些基线算法在收集的数据集中的性能,从而提供了有关其优势,局限性和潜在改进领域的见解。我们的基准测试框架是研究人员和从业人员的宝贵资源,促进了在安全性应用中开发更健壮和可靠的离线安全RL解决方案。基准网站可在www.offline-saferl.org上找到。
早期在线发布:此初步版本已被《地球系统人工智能》接受发表,可完整引用,并已指定 DOI 10.1175/AIES-D-24-0003.1。最终排版编辑文章将在出版时取代上述 DOI 的 EOR。
在本文中,我们将探讨 IQM 量子计算机的技术进步,重点介绍 QPU 和完整的全栈量子计算机。我们的重点是一台 20 量子比特量子计算机,它采用 IQM Garnet QPU,我们将把它扩展到 150 个量子比特。此外,我们还分享了 QPU 和系统级别的基准,重点介绍了一些成就,例如 2 量子比特门保真度中值为 99.5%,以及所有 20 个量子比特在 Greenberger-Horne-Zeilinger (GHZ) 状态下的真正纠缠。
自从第一次商业化和工业部署锂电池以来,国际电池行业和研发&I社区的全球电力平衡已经发生了很大的转变。日本已成为液体电解质锂离子电池的早期技术领导者,但自2015年以来,其国内行业已经失去了对中国和韩国制造商的市场份额,这受益于强大的政府支持。尤其是中国一直在迅速创新其国内电池技术。最初,中国的电池政策非常集中,目的是在1时赶上领先的国家。此外,保护性政策导致许多以前与韩国和日本供应商合作的中国汽车制造商将其电池订单转移给了国内制造商,以便从慷慨的补贴中受益。这一方面在促进中国的家庭电池价值链的种植中起着至关重要的作用2。在借助一项综合政府补贴计划的帮助下,从原材料到组件制造,牢房和包装生产以及电动汽车应用的整个价值链的成熟度后,中国已成为世界上最大的电动汽车市场。2国际能源机构估计,中国约占电池电池的75%,阴极的70%和阳极材料材料全球生产能力的85%。3
音乐将不同的曲目与给定的单音频信号分开为组件,例如鼓,贝斯和人声等任务。分离来源对于包括娱乐和助听器在内的一系列领域很有用。在本文中,我们介绍了两个新的基准,用于声音源分离任务,并在这些基准测试中比较了声音解散的流行模型及其合奏。对于模型的评估,我们在https://mvsep.com/quality_checker/上提供了排行榜,为一系列模型提供了比较。新的基准数据集可供下载。我们还基于最适合特定茎的不同模型的结合,开发了一种新颖的音频分离方法。在2023年音乐混合挑战挑战的背景下评估了所提出的解决方案,并在挑战的不同轨道中获得了最佳结果。代码和方法是在GitHub上开源的。
ACODE 基准旨在帮助机构为学生和教职员工提供优质的技术增强学习 (TEL) 体验(认识到一些机构使用诸如电子学习、在线或灵活学习、混合等术语来指代他们的实践)。有九个基准,每个基准都可以用作独立指标,也可以集体使用以提供整个机构的视角。然而,这些基准在与其他机构联合使用时会变得更加强大,作为 ACODE 每两年促进的合作机构间基准测试活动的一部分。在这种情况下,一个或多个机构愿意根据其内部基准测试活动的结果与其他机构分享他们在 TEL 方面的实践和历程。
摘要 - LARGE语言模型(LLMS)已被用来用于自动化漏洞维修中,但是台上标记表明它们可以始终如一地识别与安全性相关的错误。因此,我们开发了Secllmholmes,这是一个完全拟定的评估框架,该框架迄今为止对LLMS是否可以可靠地识别和有关安全相关的错误进行了最详细的调查。我们构建了一组228个代码方案,并使用我们的框架分析了八个不同调查维度的八个最有能力的LLM。我们的评估表明LLM提供了非确定性的反应,不正确且不忠的推理,并且在现实世界中的表现不佳。最重要的是,我们的发现在最先进的模型(例如“ Palm2”和“ GPT-4”(GPT-4')中揭示了明显的非舒适性:仅通过更改函数或可变名称,或通过在源代码中添加库函数,这些模型分别在26%和17%的情况下可以产生错误的答案。这些发现表明,在将LLMs用作通用安全助理之前,需要进一步的LLM前进。
机器学习提供了一种有价值的工具,用于分析高维功能神经影像学数据,并证明可以有效预测各种神经系统疾病,精神疾病和认知模式。在功能磁共振成像(MRI)研究中,大脑区域之间的相互作用是使用基于图的表示形式建模的。图形机学习方法的效力已经在跨众多域中建立,标志着数据解释和预测建模的跨形成一步。,尽管他们有希望,但由于潜在的预处理管道数量的庞大数量以及基于图的数据集构建的大量参数搜索空间,这些技术向神经影像域的换位一直在挑战。在本文中,我们介绍了神经图1,这是基于图的神经影像数据集的集合,并展示了其用于预测多种行为和认知性状的实用性。我们通过制作包含静态和动态大脑连接性的35个数据集,深入研究数据集生成搜索空间,运行超过15种基线方法进行基准测试。此外,我们还提供通用框架 - 用于在静态图和动态图上学习。我们的广泛实验导致了几个关键观察。值得注意的是,使用相关向量作为节点特征,结合了更多的感兴趣区域并使用稀疏图会提高性能。为了促进基于图的数据驱动神经成像分析的进一步进步,我们提供了一个全面的开源Python软件包,其中包括基准数据集,基线实现,模型培训和标准评估。