[A3] 国际脑实验室、Kush Banga、Julius Benson、Jai Bhagat、Dan Biderman、Daniel Birman、Niccol`o Bonacchi、Sebastian A Bruijns、Robert A Campbell、Matteo Carandini、Ga ̈elle A Chapuis、Anne K Churchland、M Felicia Davatolhagh、Dong、Faulk、德国、德国、德国 Julia M Huntenburg、Cole Hurwitz、Anup Khanal、Christopher Krasniak、Guido T Meijer、Nathaniel J Miska、Zeinab Mohammadi、Jean-Paul Noel、Liam Paninski、Alejandro Pan- Vazquez、Noam Roth、Michael Schartner、Karolina Socha、Nicholas A Stein、Karl Marais、Marsa Welles、Anne Welles Steven J West、Matthew R Whiteway、Olivier Winter 和 Ilana B Witten。小鼠体内电生理测量的可重复性。修订正在审查中,bioRxiv,2023 年。
帝国烟草加拿大有限公司 (“ ITCAN ”) 和帝国烟草有限公司 (统称“ Imperial ”) 乐富门、金本森和赫奇斯公司 (“ RBH ”) JTI-MacDonald 公司 (“ JTIM ”,与帝国烟草和 RBH 一起统称“ 申请人 ”) 省和地区联盟 2 (“ 联盟 ”) 安大略省 (“ Ontario ”) 魁北克省 (“ Quebec ”) 阿尔伯塔省 (“ Alberta ”) 纽芬兰和拉布拉多省 (“ Newfoundland and Labrador ”,与联盟、安大略省、魁北克省和阿尔伯塔省一起统称“ Provinces and Territories ”) 魁北克集体诉讼原告 (“ QCAP ”) 某些人身伤害集体诉讼原告 3 2 省和地区联盟由不列颠哥伦比亚省、马尼托巴省、新斯科舍省、新不伦瑞克省、爱德华王子岛萨斯喀彻温省、西北地区、努纳武特地区和育空地区。3这些人身伤害集体诉讼原告后来被免除调解程序,并由法院于 2019 年 12 月 9 日任命的泛加拿大索赔人代表取代。
• 农业是 CRISPR 技术应用的主要领域之一。 • 中国是全球CRISPR发明的领先国家,农业是该技术应用的重要关注点。 • 美国是产生与农业领域的CRISPR技术相关的专利申请家族数量最多的国家,并且获得了广泛的地域保护。 • 大部分存款与教学和研究机构有关,尤其是美国的机构。 • 在 CRISPR 技术在农业应用相关发明开发方面表现突出的公司包括 Corteva、拜耳、利马格兰集团、Sakata Seed、先正达和 KWS。 • 利马格兰集团、坂田种子、先正达和 KWS 的发明大部分来自其各自的原产国:法国、日本、瑞士和德国。 • 在该地区的主要储户中,一些较小的公司也开展了重要的发明开发活动,例如 Benson Hill、Inari Agriculture Technology、Pairwise Plants Services 和山东顺风生物科技。
This article: Zeleva B, Verstappen A, Overman DM, Ahmad F, Ali SKM, The Hales ZY, Atalah JG, Baker-Smith C, Basken A, Basque A, Basque JS, Benson H, Carose S, Chowdhury D, Eice MS, Cooper DS, Deanfield JE, Dearani J, Valley B, Dodds KM, Black, Edwin F, Ecourian E, NN Fatema, Commantion A, Hasan B, Henry L, Hugoman C C, Kumar RK, Lopez KN, Macedo AP, Marino BS, Marwali EM, Meijboom FJ, SS Mattos, Najm H, Newlin D, Novick WM, Qureshi SSA, Rahmat B, Raylman R, Saltik IL, Sable C, Sanda A, Scanlan E, Smith JD,圣路易斯,Tchervenkov CI,Tiong KG,Life V,Sylle S,Wilkinson JL,Zuhlke L和Jacobs JP(2023)Young中的心脏病学33:1277 - 1287。doi:10.1017/s1
4。syzygium paniculatum已被广泛种植,商业销售,种植为一种流行的观赏性,并作为丛林再生项目的一部分种植(Thurlby 2010)。现在已经知道或怀疑将悉尼大都会,中央海岸和卡鲁赫曼宁亚群的大量部分与恐慌链球菌一起种植(L. ForsterPers。comm。2023年3月),该物种是已知的食品资源(Low 1991,Nash 2004,Renwick 2000,Benson和Eldershaw 2007),可能会被原住民人士搬到数千年中(Silcock 2018)。无需进一步探索定义“种植”或对该物种“自然”分布的重新分析,确定该物种分布的预防措施是仅使用典型栖息地的确认记录,是典型的栖息地,是沿线和亚热带雨林社区。因此,本评估中使用的记录包括标本室确认的代金券标本,现场验证的记录和基因组研究中采样的记录(Lu-irving and Rossetto 2021,Lu-ir-irving et al。2023)。
一般CCS参考艾伯塔省政府。2023。碳捕获,利用和存储。在线网站actalberta.ca。Bachu,S.,Heidug,W。和Zarlenga,F。2005。第5章。地下地质存储。在书中:IPCC有关CO2捕获和隔离的特别报告。(第195-265页)。出版商:剑桥大学出版社。英国地质调查局。2023。碳捕获和存储(CCS),BGS研究。网站资源。Dwivedi,R。2019。什么是碳固存。https://www.azocleantech。com/com/acrat.aspx?aprentid = 28 Halder,S。2022。揭示了碳捕获和存储的最佳见解。TGS在线文章。Kaplan,L。2023。全球CCUS支出预计到2023年至2030年之间的2560亿美元超过2560亿美元。Rystad Energy。 Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。 2019。 概述矿物质和地质形成中二氧化碳存储的状态和挑战。 气候期刊的边界1:9,www.frontiersin.org。 国际CCS知识中心。 2020。 一目了然的碳捕获存储。 海报。 CCS知识中心,萨斯喀彻温省Regina。 Lacey,D。2023。 CCS:挑战,机会和需求。 BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。Rystad Energy。Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。2019。概述矿物质和地质形成中二氧化碳存储的状态和挑战。气候期刊的边界1:9,www.frontiersin.org。国际CCS知识中心。2020。一目了然的碳捕获存储。海报。CCS知识中心,萨斯喀彻温省Regina。Lacey,D。2023。CCS:挑战,机会和需求。BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。BOE中的文章。IEA CCUS项目数据库。2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。章节。地质碳固并作为减轻CO2排放的全球战略:可持续性和环境风险。劳伦斯·伯克利国家实验室,www.osti.gov Robertson,B。和Mousavian,M.2022。碳捕获关键:经验教训。IEEFA(能源,经济学和财务分析研究所)文章。 美国能源部。 1999。 碳固相研究和开发。 报告可在www.ornl.gov/carbon_sepertration/ 上获得IEEFA(能源,经济学和财务分析研究所)文章。美国能源部。1999。碳固相研究和开发。报告可在www.ornl.gov/carbon_sepertration/
此外,周二还将举行为期半天的异构集成路线图研讨会,由 Bill Chen 和 Bill Bottoms 主持。ECTC 还将邀请行业专家举办 7 场特别会议,讨论几个重要且新兴的主题领域。周二将安排 5 场特别会议,每场 90 分钟。5 月 31 日星期二上午 8:30,Chukwudi Okoro 和 Benson Chan 将主持“MicroLED 显示技术:大批量制造 (HVM) 进展与挑战”会议,随后 Amr Helmy 将于上午 10:30 主持特别会议,主题为“IEEE EPS 异构集成路线图的选定主题”。周二下午 1:30,Jan Vardaman 将就“从芯片到共封装光学器件”这一主题发表特别演讲,随后 Kuldip Johal 和 Bora Baloglu 将在下午 3:30 发表特别演讲,题为“IC 基板技术将如何发展以实现下一代异构集成方案以实现高性能应用?”周二晚上,Kitty Pearsall 和 Chris Riso 将共同主持 EPS 总裁 ECTC 小组会议,主题为“最先进的异构集成封装方案”。
我饶有兴趣地阅读了 1 月至 2 月版《ARMOR》杂志上有关第 2 ACR 的文章。 LTC Kevin Benson 提出了一个有趣的理由,要求为该团增加重量、防护和火力;但我仍然不相信。虽然关于选择有很多话要说,但事实是,第 2 骑兵团代表了陆军为应对冷战结束而对机动部队做出的唯一重大结构变化。它的设计旨在实现可部署、多用途和致命性,是海地、索马里和波斯尼亚等任务的理想选择。它的设计目的并非与重型威胁决一死战。我们需要两个重型团来执行那个任务;但这不是这里的问题。我发现值得注意的是,告别 M551 的文章也出现在同一期。战斗车辆是需求蔓延的典型受害者,其设计目的是为所有人做所有事情,因此无法满足任何人。第 2 骑兵团的结构不能忽视战斗车辆的类比。陆军不能同时实现两种目标;轻骑兵要么立即部署,要么毫无用处。事实上,我认为按照计划将装甲炮系统部署到侦察部队将是一个严重的错误。我们需要的是一种更轻的车辆,配备小型火炮,比装甲 HMMWV 能更好地保护乘员,而且易于空运。在决定建造 AGS 之前,许多平台都具有不同程度的能力
(Benson、Downes 和 Dow 2011;J. Paik 等人 2005;J. Paik 2009;J. Paik 等人 2007;Rigo 等人 2003),拉伸设计方法一直被忽视。无法有效预测拉伸连接的强度和延展性,对使用现代极限状态设计开发轻质铝结构具有严重影响。Smith 方法等渐进式破坏方法需要预测结构元件的载荷-缩短和载荷-延伸曲线,但我们缺乏任何切实可行的方法来预测焊接铝结构的载荷-延伸曲线。直接应用有限元法已被证明是一种困难的方法,需要比板厚度小得多的网格离散化(Wang 等人 2007;Dørum 等人 2010)。此外,如果要在模型中使用壳单元,则需要自定义单元丰富。除了学术研究团体或专业咨询机构外,此类技术尚未实用。迄今为止开发的技术仅在土木工程结构常见的细节类型上得到验证。因此,海洋结构工程师目前缺乏实用工具和实验数据来设计完全考虑焊缝不匹配影响的结构。
标题:设计一种粘蛋白选择性蛋白酶,用于靶向降解癌症相关的粘蛋白 作者:Kayvon Pedram 1,10*、D. Judy Shon 1*、Gabrielle S. Tender 1*、Natalia R. Mantuano 2,3、Jason J. Northey 4、Kevin J. Metcalf 4、Simon P. Wisnovsky 1,11、Nicholas M. Riley 1、Giovanni C. Forcina 1、Stacy A. Malaker 1,12、Angel Kuo 1、Benson M. George 5,6,13、Caitlyn L. Miller 1、Kerriann M. Casey 7、José G. Vilches-Moure 7、Valerie M. Weaver 4,8、Heinz Laübli 2,3、Carolyn R. Bertozzi 1,9†附属机构:1 斯坦福大学化学系和 Sarafan ChEM-H,斯坦福,加利福尼亚州 94305,美国 2 巴塞尔大学生物医学系癌症免疫治疗实验室,巴塞尔,BS 4031,瑞士 3 巴塞尔大学医院治疗诊断学系肿瘤学分部,巴塞尔,BS 4031,瑞士 4 加州大学旧金山分校 (UCSF) 外科系生物工程与组织再生中心,旧金山,加利福尼亚州 94143,美国 5 斯坦福大学医学院干细胞生物学与再生医学研究所,斯坦福,加利福尼亚州 94305,美国