被电磁场捕获的电子和离子长期以来一直是重要的高精度计量仪器,最近也被提议作为量子信息处理的平台。这里我们指出,由于这些系统具有极高的荷质比以及低噪声量子读出和控制,因此它们还可用作高灵敏度的带电粒子探测器。特别是,这些系统可用于检测比典型电离尺度低许多数量级的能量沉积。为了说明,我们提出了一些粒子物理学中的应用。我们概述了一种无损飞行时间测量方法,该方法能够对缓慢移动的准直粒子进行亚 eV 能量分辨率测量。我们还表明,目前的设备可用于对环境暗物质粒子携带小电毫电荷≪ e 的模型提供具有竞争力的灵敏度。我们的计算可能还有助于表征来自带电粒子背景的量子计算机噪声。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
2008 年《遗传信息反歧视法案》(GINA)禁止雇主和 GINA 第二章所涵盖的其他实体索要或要求个人或个人家庭成员提供遗传信息,除非该法律明确允许。为了遵守该法律,我们要求您在回应此医疗信息请求时不要提供任何遗传信息。根据 GINA 的定义,“遗传信息”包括个人的家族病史、个人或家庭成员的基因测试结果、个人或个人家庭成员寻求或接受遗传服务的事实,以及个人或个人家庭成员所怀胎儿或接受辅助生殖服务的个人或家庭成员合法持有的胚胎的遗传信息。
随着新生量子处理单元中量子比特数量的增加,第一代实验中使用连接式 RF(射频)模拟电路变得极其复杂。物理尺寸、成本和电气故障率都成为控制系统可扩展性的限制因素。我们开发了一系列紧凑型 RF 混频板来应对这一挑战,通过在具有 EMI(电磁干扰)屏蔽的 40 mm × 80 mm 4 层 PCB(印刷电路板)上集成 I/Q 正交混频、IF(中频)/LO(本振)/RF 功率电平调整和 DC(直流)偏置微调。RF 混频模块设计用于 2.5 至 8.5 GHz 之间的 RF 和 LO 频率。测得的典型镜像抑制和相邻信道隔离分别为 ∼ 27 dBc 和 ∼ 50 dB。通过在环回测试中扫描驱动相位,模块短期幅度和相位线性度通常测量为 5 × 10 − 4 (V pp /V mean ) 和 1 × 10 − 3 弧度 (pk-pk)。通过将 RF 混合板集成到超导量子处理器的室温控制系统中并执行单量子比特门和双量子比特门的随机基准测试表征,验证了 RF 混合板的运行。我们测量了单量子比特过程不保真度为 9 . 3 ( 3 ) × 10 − 4 和双量子比特过程不保真度为 2 . 7 ( 1 ) × 10 − 2 。
当我在2020年12月下旬开始这篇文章时,很明显,在2021年1月6日对美国总统选举结果的常规批准注定会成为共和党内部的一场艰苦的战斗。最令人惊讶的方面是,这种期望的实现是特朗普的突击队突然闯入国会大厦的轻松,尽管与2020年黑人生活抗议者访问的警察暴力发生了鲜明的对比,很快就清楚地表明了奇观的白人至上主义者。在1月8日晚上对MSNBC进行冷酷评估时,记者罗恩·苏斯金德(Ron Suskind)估计,约有20%的特朗普选民(约1500万人)少数人竭尽全力组建一支私人军队,准备在特朗普的支持下战斗。1在1月7日进行的1,397名注册选民中进行的一项民意调查发现,在7400万投票给特朗普投票的共和党人中,有45%积极支持入侵国会大厦2的入侵 - 这解释了为什么在众议院和参议院中有147名共和党人愿意验证特朗普的努力,尽管曾在曾在竞选中取得了努力,但仍在努力竞选了四个小时,但他曾在竞选中占领了四个小时的工作。我们被迫见证的令人难以置信的糟糕电影无疑会在本文发表时,在进一步的怪异方向上毫无奇怪,只有我们当中最愚蠢的人才敢于预测这是什么。3
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
我们提出Mistiqs,这是一种用于时间相关的量子模拟的乘法软件。mistiqS提供了端到端功能,用于模拟由多个量子计算平台跨时间依赖的海森伯格·汉密尔顿(Heisenberg Hamiltonians)模拟系统的量子多体动力学。它提供了高级编程功能,用于生成量子电路的中间表示,可以将其转化为各种行业标准表示。此外,它提供了电路汇编和优化方法的选择,并促进了当前基于云的量子计算后端的量子电路的执行。mistiqs是一个可访问且高度灵活的研究和教育平台,使更广泛的科学家和学生可以对当前量子计算机进行量子多体动力学模拟。©2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 - 作为量子信息处理器在quantum位(Qubit)计数和功能性中生长,控制和测量系统成为大规模可扩展性的限制因素。为了应对这一挑战并保持速度不断发展的经典控制要求,完全控制堆栈访问对于系统级别的优化至关重要。我们设计了一个基于模块化的FPGA(可编程门阵列)的系统,称为Qubic,以控制和测量超导量子处理单元。该系统包括室温电子硬件,FPGA门软件和工程软件。由几个商业现成的评估板和内部开发的电路板组装的原型硬件模式。gateware和软件旨在实现基本的量子控制和测量协议。通过在劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laberatory)的高级量子测试中运行的超导量子处理器上的超导量子处理器上进行量子芯片表征,栅极优化和随机基准测量序列来证明系统功能和性能。通过随机基准测量,单量和两级工艺条件的测量为0.9980±0.0001和0.948±0.004。具有快速电路序列加载能力,Qubic可以有效地执行随机编译实验,并证明执行更复杂的算法的可行性。
随着量子计算机的大小和复杂度增加,量子位 (qubit) 表征和门优化成为复杂且耗时的任务。当前的校准技术需要复杂而繁琐的测量来调整量子位和门,无法轻易扩展到大规模量子系统。我们开发了一种简洁的自动校准协议来表征量子位并优化门,使用 QubiC,这是一种基于开源 FPGA(现场可编程门阵列)的超导量子信息处理器控制和测量系统。我们提出了基于多维损失的单量子位门优化和双量子位 CNOT 门校准的全 XY 平面测量方法。我们证明 QubiC 自动校准协议能够在劳伦斯伯克利国家实验室的高级量子测试平台上运行的最先进的 transmon 型处理器上提供高保真门。通过随机基准测试测得的单量子位和双量子位 Clifford 门不保真度为 4。分别为 9(1 . 1) × 10 − 4 和 1 . 4(3) × 10 − 2。
当前一代嘈杂的中间量子量子(NISQ)硬件的成功表明,即使没有错误校正,量子硬件也可能能够解决复杂的问题。一个杰出的问题是这些设备的复杂性增加引起的连贯错误。这些错误可以通过电路积累,从而使它们对算法的影响难以预测和减轻。迭代算法(如量子假想时间的演化)易受这些错误的影响。本文介绍了使用随机编译和缓解误差和纯化的噪声调整的组合。我们还表明,循环基准测试对纯度的可靠性进行了估计。我们将此方法应用于横向场ISING模型的量子假想时间演变,并报告了能量估计和基础状态,两者均低于1%。我们的方法是一般的,可用于其他算法和平台。我们展示了将噪声调整和缓解误差的结合如何推动NISQ设备的性能。