截至2021年1月,最近出现的严重急性 - 病毒综合症2导致全球超过200万人死亡和超过1亿次感染(1)。sars-cov-2是冠状病毒家族的成员。呼吸道感染可能导致疾病的疾病,即covid-19。COVID-19的更严重的病例导致由于急性呼吸窘迫综合征和对肺泡腔的损害而导致死亡(2)。目前,对于Covid-19患者,几乎没有治疗选择。抗病毒RNA依赖性聚合酶抑制剂REMDESIVIR降低了COVID-19的住院时间和死亡(3)。此外,类固醇dexame-thasone也已被批准用于严重的Covid-19(4)。到目前为止,已经开发了许多有效的疫苗(5,6)。尽管有这些进展,但仍需要额外的抗病毒治疗剂来治疗未来的流行感染。目前正在进行的全球努力正在进行中,以识别和开发新的抗病毒和抗炎疗法,以减少相关的医院和死亡。
促进人工智能发展是否必要?正如 Teece ( 1980 , 2020 ) 所言,当互补投入市场失灵时——尤其是在人工智能等复杂领域,很难为投入组合的成本和收益定价——垂直整合是更好的选择,因为它允许大公司通过重复使用投入来利用其范围经济。 ○ 在此背景下,欧盟执行《数字市场法》是否可行
摘要。最近出现的可解释人工智能 (XAI) 领域试图以人类可以理解的术语阐明“黑箱”机器学习 (ML) 模型。随着多种解释方法的开发以及黑箱模型的不同应用,需要专家级评估来检查其有效性变得不可避免。这对于敏感领域(例如医疗应用)非常重要,因为专家的评估对于更好地了解复杂 ML 的结果的准确性以及在必要时调试模型至关重要。本研究的目的是通过实验展示如何利用医疗应用中的专家级 XAI 方法评估并将其与临床医生生成的实际解释保持一致。为此,我们从配备眼动仪的专家受试者那里收集注释,同时他们对医学图像进行分类,并设计一种方法将结果与从 XAI 方法获得的结果进行比较。我们通过多个实验证明了我们方法的有效性。
