摘要 为了对广域电网进行监控,人们开发了广域监控系统 (WAMS)。每个变电站都设有全球定位系统 (GPS) 接收系统以提供可信的授时。因此,对于 WAMS 来说,在广域范围内维持真实的 GPS 授时至关重要。然而,由于未加密的信号结构和低信号功率,GPS 授时容易受到欺骗。因此,为了从欺骗中获得可信的 GPS 授时,人们在人工智能 (AI) 框架下开发了一种新的广域监控算法,该算法由分布式信念传播 (BP) 和双向循环神经网络 (RNN) 组成。这种联合 BP-RNN 算法通过利用其分布式处理能力评估估计的 GPS 授时误差来验证每个变电站的身份。特别是,双向 RNN 在人工智能框架下提供了一种快速的授时误差估计方法。仿真结果验证了该方法比基于 Kullback-Leibler 散度的方法具有更快的检测时间,并且定时误差估计精度超过了 IEEE C37.118.1-2011 标准规定的限制。