ABP An Bord Pleanála ACA Agricultural Consultants Association AD Anaerobic Digestion AFIR Alternative Fuels Infrastructure Regulation BnM Bord na Móna BCP Broadband Connection Point BER Building Energy Rating BEREC Body of European Regulators for Electronic Communications BIK Benefit in Kind BIM An Bord Iascaigh Mhara CADB Climate Action Delivery Board CAP Climate Action Plan CAP Common Agricultural Policy CARO Climate Action Regional Office CC23 Climate Conversations 2023 CCCC Climate Communications Coordination Committee CCAC Climate Change Advisory Council CCMA County and City Management Association CCIM Climate Change in the Irish Mind CCS Carbon Capture and Storage CECLT Citizen Engagement and Climate Literacy Taskforce CEP Clean Export Premium ComReg Commission for Communications Regulation CRU The Commission for Regulation of Utilities KIC Knowledge and Innovation Community (KIC)二氧化碳二氧化碳CO2EQ。二氧化碳等效的CSO中央统计办公室CSP共同的农业政策战略计划DART都柏林地区快速运输Daera农业,环境和农村事务部(英国)DAFM农业,食品和海洋士兵部儿童平等,残疾人,整合,整合,整合和及环境和通信的dafm农业,食品和海洋士兵部门,环境和通信,及环境和通讯,并将 Science DETE Department of Enterprise, Trade, and Employment DFA Department of Foreign Affairs D/FIN Department of Finance D/Health Department of Health DHLGH Department of Housing, Local Government, and Heritage D/Transport Department of Transport DPER Department of Public Expenditure and Reform DMURS Design Manual for Urban Roads and Streets DRCD Department of Rural and Community Development DSP Department of Social Protection D/Taoiseach Department of the Taoiseach DTCAGSM Department of旅游,文化,艺术,盖尔塔特,体育和媒体EDRRS增强了退役,康复和恢复计划EGFSN未来技能的专家小组,需要EI Enterprise Ireland Ireland Eip Eroper Euroland Innovation Innovation Enerovation eit Eutor欧洲欧洲创新与技术EMRA EMRA东部和Midland Regional Regional Indortional Institute
引言Bcl-2蛋白质家族包括功能相反的,尽管结构相关的蛋白质[1]。创始成员Bcl-2在1980年代中期发现了其与血液癌(如卵泡淋巴瘤)的染色体易位(t(14; 18))特征[2-5]。然而,直到1988年,它的真实功能才被发现是一种促进细胞存活而不是细胞增殖的癌基因,就像当时其他已知的致癌基因一样[6]。后来发现了其他几种促生存蛋白(BCl-XL,MCL-1,BCL-W和BFL-1),所有这些都与称为Bcl-2同源性(BH1 - 4)结构域的四个序列同源性区域相关[7-10]。在具有促进死亡功能的蛋白质子集中也发现了这些,即Bax,Bak和Bok(以下简称Bax/Bak蛋白)[11-13]。并行,第二组促凋亡蛋白(即BAD,BIM,BID,BIK,BMF,NOXA,PUMA,HRK)也被发现仅具有BH3域,因此称为仅BH3蛋白[14-21]。生化和遗传学研究很快揭示了一般的途径,现在称为内在的求主途径,通过该途径,细胞会自杀以响应多种应力(例如生长因子含量,活性氧,内质网应激,减轻DNA的化学疗法)。在健康的细胞中,Bax/Bak蛋白在细胞质或与线粒体上的促蛋白结合的“灭活”状态下存在[12,22 - 26]。死亡刺激后,凋亡是通过仅BH3蛋白的转录或翻译后上调引发的。这些与生存蛋白结合,并释放任何结合的“活化的” Bax/Bak样蛋白,或者,它们可以直接结合Bax/Bak,以诱导构象变化,使它们能够寡聚并在线粒体外膜中形成孔隙,从而释放出Cyto-Chrome [27 - 31],从而释放出Cyto-Chrome [2]。细胞色素c促进了APAF-1的寡聚和凋亡小体的组装,该分子平台是一种分子平台,可以使蛋白水解caspase酶(caspase 9,caspase 9,然后是caspase 3/7)进行顺序激活[33] [33] [33],它裂解了重要的细胞内底物,导致了细胞的衰老。通常,细胞凋亡受到促源性蛋白的限制,从而隔离了其促凋亡的反应。当促凋亡蛋白的水平压倒了生存分子时,凋亡随之而来。由于各种细胞缺陷而导致的失控凋亡,包括发表的记录的异常表达:2021年9月13日
•Liaskoni,M.,Huszár,P.,Bartík,L.,Prieto Perez,A。P.,Karlický,J。和郡K。:生物挥发性有机体化合物对中国欧洲冰分型对欧洲城市臭氧模式的长期影响。化学。Phys。,24,13541–13569,https://doi.org/10.5194/acp-24-13541-2024,2024。•Bartík,L.,Huszár,P.,Karlický,J.,Vlček,O。和Eben,K。:建模中欧PM污染的驱动因素:来自不同来源的排放的影响和贡献,来自不同来源的Attos,Attos。化学。phys。,24,4347–4387,https://doi.org/10.5194/acp-24-4347-2024,2024,2024•Karlický,J.,Rieder,Rieder,Huszár,Huszár,P.空气中的区域臭氧负担。Qual。Atmos。健康,https://doi.org/10.1007/s11869-024-01516-3,2024。•Belda,M.,Benešová,N.,Resler,J.,Huszár,P.,Vlček,O.模型开发,17,3867–3878,https://doi.org/10.5194/gmd- 17-3867-2024,2024。•Huszar,P。,Prieto Perez,A。P.,Bartík,L.,Karlický,J。和Villalba-Pradas,A。:城市化对中欧颗粒物浓度的影响,Atmos。化学。Phys。,24,397–425,https://doi.org/10.5194/acp-24-397-2024,2024。•Liaskoni,M.,Huszar,p。,Bartík,L.,Prieto Perez,A。P.,Karlický,J。和Vlček,O。:建模建模欧洲风吹出的灰尘排放及其对颗粒物(PM)浓度的影响,Atmos,Atmos。化学。Phys。,23,3629–3654,https://doi.org/10.5194/acp-23-3629-2023,2023。•Huszar,P.,Karlický,J.,Bartík,L.,Liaskoni,M.,Prieto Perez,A。P.和K。j. fancte:城市化对气相污染物浓度的影响:贡献的区域尺度,基于贡献因素的区域范围,基于贡献因素的模型分析。化学。Phys。,22,12647–12674,https://doi.org/10.5194/acp-22-12647-2022,2022。•Sindelarova,K.,Markova,J.,Simpson,D.,Huszar,P.,Karlicky,J.,Darras,S。和Granier,C。:高分辨率2000- 2019年的高分辨率生物源全球排放清单,用于空气质量模型,地球Syst。SCI。 数据,14,251–270,https://doi.org/10.5194/essd-14-251-2022,2022。 •Huszar,P.,Karlický,J.,Marková,J.,Nováková,T.,Liaskoni,M。和Bartík,L。:城市排放对欧洲空气质量的区域影响:城市顶篷的作用:城市顶篷的作用,Atmos,Atmos,Atmos。 化学。 Phys。,21,14309–14332,https://doi.org/10.5194/acp-21-14309-2021,2021。 •Resler,J.,Eben,K.,Geletič,J.,Krč,P.,Rosecký,M.,Sühring,M.,Belda,M.,Fuka,V.,Halenka,T.,T.,Huszár,p。 Nápravníková,š。和O。的Vlček:在真正的城市环境中对棕榈模型系统6.0的验证:捷克共和国布拉格的Dejvice的案例研究,Geosci。 模型开发,14,4797–4842,https://doi.org/10.5194/gmd-14-4797-2021,2021。 •Musiolková,M.,Huszár,P。,Navrátil,M。和špunda,V。:季节,云覆盖物和空气污染对紫外线不同光谱区域的影响以及表面上可见的太阳辐射。 res。 化学。SCI。数据,14,251–270,https://doi.org/10.5194/essd-14-251-2022,2022。•Huszar,P.,Karlický,J.,Marková,J.,Nováková,T.,Liaskoni,M。和Bartík,L。:城市排放对欧洲空气质量的区域影响:城市顶篷的作用:城市顶篷的作用,Atmos,Atmos,Atmos。化学。Phys。,21,14309–14332,https://doi.org/10.5194/acp-21-14309-2021,2021。•Resler,J.,Eben,K.,Geletič,J.,Krč,P.,Rosecký,M.,Sühring,M.,Belda,M.,Fuka,V.,Halenka,T.,T.,Huszár,p。 Nápravníková,š。和O。的Vlček:在真正的城市环境中对棕榈模型系统6.0的验证:捷克共和国布拉格的Dejvice的案例研究,Geosci。模型开发,14,4797–4842,https://doi.org/10.5194/gmd-14-4797-2021,2021。•Musiolková,M.,Huszár,P。,Navrátil,M。和špunda,V。:季节,云覆盖物和空气污染对紫外线不同光谱区域的影响以及表面上可见的太阳辐射。res。化学。Q J r Meteorol Soc,1-16,2021,https://doi.org/10.1002/qj.4102•Pisoft,P.,Sacha,P.,Polvani,L.M.A.,de la Torre,L.,Eichinger,R.,Foelsche,U.,Huszar,P.,Jacobi,Ch。Lett。,16,064038,2021。•Karlický,J.,Huszár,P.,Nováková,T.,Belda,M.,švábik,F.,Doubalová,J。和Hall,T。:“城市气象学岛”:一个多模型的合奏分析,Atmos,Atmos。Phys。,20,15061–15077,https://doi.org/10.5194/acp-20-15061-2020,2020,2020。•Huszar,P.,Karlický,J.,ubalová,J.,Nováková,T.化学。Phys。,20,11655–11681,https://doi.org/10.5194/acp-20-11655-2020,2020。•J。Doubalová; Huszar,p。 Eben,K。; Benesova,N。; Belda,M。; O。Vlček; Karlicky,J。; Geletič,J。;上衣,T。:urbi pragensi项目中对布拉格的高分辨率空气质量预测:冬季的模型性能以及城市参数化对PM,大气,11、625、2020的影响。