MEMS 技术已广泛应用于消费电子、汽车工业、航空航天和生物医疗设备等众多领域。在消费电子领域,MEMS 传感器(如加速度计和陀螺仪)用于智能手机和平板电脑的方向感测和运动跟踪。在汽车工业中,MEMS 传感器用于安全气囊系统、轮胎压力监测系统和电子稳定控制系统等,以提高安全性和性能。在航空航天工业中,MEMS 传感器用于导航系统、惯性测量单元和振动监测系统,以提高飞机的性能和可靠性。
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
2. 上述第 1 款中的稳性手册的编制和批准应证明其完整稳性足以满足预期服务。足够的完整稳性意味着符合相关主管机关或本社考虑到船舶大小和类型而制定的标准。长度为 24 米及以上的船舶的完整稳性水平不应低于 IMO Res. MSC.267(85)(2008 年通过国际完整稳性规则)A 部分规定的适用于所考虑船舶类型的水平。如果有关主管机关接受其他标准,则这些标准可用于分类目的。有关主管机关的批准证据可用于分类目的。(2020 年)
通信。联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第一阶段的数据链路通信将随着新应用的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第二阶段,联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第二阶段和第三阶段逐步实现。地地操作和管理通信系统将合并为一个集成的地面数字电信系统。
但是,格式形成逆变器的最新进展表明,这些稳定性问题中的许多都可以有效解决。研究表明,频率的性能实际上可以随着电网形成逆变器的整合而改善,因为它们会积极地有助于系统的惯性和电压支持。尽管在具有极高可变的可再生能源(VRE)和同步物质的全部阶段的电力系统的可行性方面仍然存在挑战,但潜在的解决方案(例如同步冷凝器和其他稳定技术)可以用作可靠的后排。虽然向高空场景的过渡呈现出技术复杂性,但电源电子和系统稳定策略的持续创新为确保安全且弹性的电力系统提供了可行的途径。
通信。联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第一阶段的数据链路通信将随着新应用的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第二阶段,联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第二阶段和第三阶段逐步实现。地地操作和管理通信系统将合并为一个集成的地面数字电信系统。
通信。美国联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第 1 阶段的数据链路通信将随着新应用程序的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第 2 阶段,美国联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第 2 和第 3 阶段逐步实现。地地运营和管理通信系统将合并为一个集成的地面数字电信系统。
