安全是将重新执行学习(RL)应用于实际问题的必不可少的要求。尽管近年来提出了大量的安全RL算法,但大多数现有工作通常1)依赖于收到Nu-ereric Safety Affect的反馈; 2)不能保证在学习过程中的安全; 3)将问题限制为先验已知的确定性过渡动力学;和/或4)假设对任何州的已知安全政策都具有关注。解决上述问题时,我们提出了长期的二进制反馈安全RL(LOBISARL),这是一种具有二进制安全反馈和未知的随机状态过渡功能的马尔可夫决策过程(CMDP)的安全RL算法。lobisarl优化了一项政策,以最大程度地提高奖励,同时保证代理商在每个情节中仅执行安全的州行动对,并以很高的可能性执行安全的州行动对。具体来说,Lobisarl通过广义线性模型(GLM)对二进制安全函数进行建模,并且在每个时间步骤中仅采取安全措施,同时在适当的假设下对未来的安全产生影响。我们的理论结果表明,Lobisarl具有很高的可能性,可以保证长期的安全限制。最后,我们的经验结果表明,我们的算法比现有方法更安全,而没有显着损害奖励方面的表现。
气候变化对我们环境和生活的不断升级促使气候变化行动主义激增。但是,诸如Twitter之类的社交媒体平台的滥用为仇恨激进主义,针对个人,组织或整个社区的仇恨打开了大门。此外,推文中对立场的识别也具有至关重要的意义,尤其是在理解行动主义成功的概述中。因此,为了应对检测此类仇恨推文,确定其目标并从Tweets的立场的挑战,此共享任务引入了三个子任务,每个任务都旨在提及一个提到的问题。我们在所有三个子任务中都涉及,在本文中,我们在不同的机器学习(ML),深度学习(DL),混合动力和基于变压器的模型之间进行了比较分析。我们的方法涉及对模型的适当高参数调整,并通过数据过采样来有效地处理类不平衡数据集。值得注意的是,我们的微调M-Bert在子任务A(仇恨语音检测)中获得了0.91的宏平均F 1分数,在子任务B(目标识别)中达到了0.74。另一方面,气候 - 伯特在子任务中的F 1得分为0.67。这些分数将我们定位在前沿,在各个子任务中获得第1,第6和15位。github 1中提供了任务的详细信息信息。
隶属等级 (GoM) 模型是用于多变量分类数据的流行个体级混合模型。GoM 允许每个主体在多个极端潜在概况中拥有混合成员身份。因此,与限制每个主体属于单个概况的潜在类别模型相比,GoM 模型具有更丰富的建模能力。GoM 的灵活性是以更具挑战性的可识别性和估计问题为代价的。在这项工作中,我们提出了一种基于奇异值分解 (SVD) 的谱方法来进行具有多元二元响应的 GoM 分析。我们的方法取决于以下观察:在 GoM 模型下,数据矩阵的期望具有低秩分解。对于可识别性,我们为期望可识别性概念开发了充分和几乎必要的条件。对于估计,我们仅提取观测数据矩阵的几个前导奇异向量,并利用这些向量的单纯形几何来估计混合成员分数和其他参数。我们还在双渐近状态下建立了估计量的一致性,其中受试者数量和项目数量都增长到无穷大。我们的谱方法比贝叶斯或基于可能性的方法具有巨大的计算优势,并且可以扩展到大规模和高维数据。广泛的模拟研究表明我们的方法具有卓越的效率和准确性。我们还通过将我们的方法应用于人格测试数据集来说明我们的方法。
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
在许多计算机视觉应用程序中,本地图像特征的抽象有效匹配是一项基本任务。然而,由于其硬件和有限的能源供应的简单性,因此在计算有限的电视(例如手机或无人机)中,在计算有限的DECES(例如移动电话或无人机)中,实时性能受到损害。在本文中,我们介绍了一个有效的学习二进制图像描述符。它改善了我们以前的价值描述符,Belid,使其更有效地进行匹配和更准确。为此,我们将使用Adaboost进行了改进的弱体培训计划,从而产生更好的本地描述。此外,我们通过迫使所有弱学习者在强大的学习者组合中具有相同的权重,并在不平衡的数据集中训练它,以解决在匹配和检索任务中产生的不对称性。在我们的实验中,与Orb相比,在本文中,其精确度接近SIFT,计算效率更好,Orb是文献中最快的算法。
摘要:本文提出了一种针对不平衡数据的稳健加权评分 (ROWSU),用于在存在类别不平衡问题的高维基因表达二分类问题中选择最具判别性的特征。该方法解决了基因表达数据集中类别分布高度倾斜这一最具挑战性的问题之一,该问题会对分类算法的性能产生不利影响。首先,通过从少数类观测值中合成数据点来平衡训练数据集。其次,使用贪婪搜索方法选择最小基因子集。第三,引入一种新的加权稳健评分,其中权重由支持向量计算,以获得一组优化的基因。将基于该方法得分最高的基因与通过贪婪搜索方法选择的最小基因子集相结合,形成最终的基因集。即使在类别分布倾斜的情况下,新方法也能确保选择最具判别性的基因,从而提高分类器的性能。在6个基因表达数据集上评估了所提出的ROWSU方法的性能。以分类准确率和灵敏度作为性能指标,将所提出的ROWSU算法与其他几种最先进的方法进行比较。为了更好地理解结果,还绘制了箱线图和稳定性图。结果表明,所提出的方法优于现有的基于k近邻(kNN)和随机森林(RF)分类器分类性能的特征选择程序。
博士学位 - 迈索尔大学Bina Joe博士是院长的执行内阁成员,杰出大学教授,生理学与药理学系主席,弗雷德里克·希斯(Frederick -Hiss)捐赠教授兼医学院医学院医学院的高压和精确医学中心的创始主任。乔博士获得了博士学位来自印度迈索尔大学。在班加罗尔印度科学学院进行了短暂的博士后研究金之后,她搬到了为印度阿斯利康(Astrazeneca India)工作的制药行业,随后于1997年作为国际福加蒂学者(Fogarty School)移民到美国,以进行分子遗传学研究分子遗传学研究。她在高血压的工作始于2001年,当时她在现任机构托莱多大学医学院(以前被称为俄亥俄州医学院)担任教职员工。2011年,她成立了高血压和精密医学中心,这是大学研究委员会批准的中心。自2015年以来,她担任了部门主席的职位。在过去的二十年中,她一直在领导高血压研究中发挥作用,该研究现在被认为是托莱多大学独特区别的聚光灯研究领域。Joe博士是高血压研究的国际认可的领导者,在过去的17年中,美国政府不断地以2200万美元的价格资助。 她发表了超过150篇同行评审的文章,许多记录了开创性的发现和6个书籍章节。Joe博士是高血压研究的国际认可的领导者,在过去的17年中,美国政府不断地以2200万美元的价格资助。她发表了超过150篇同行评审的文章,许多记录了开创性的发现和6个书籍章节。她的研究工作发表在几种顶级期刊上,包括PNA,细胞,细胞报告和自然通信。她的实验室是第一个使用CRISPR -CAS9基因编辑来定位克隆非编码变体的实验室,从而引起高血压。最新的先驱她的实验室最新创新发现包括(1)将肠道菌群鉴定为血压调节的因果因素,(2)酮体体链甲酰丁酸酯作为抗繁殖代谢物,(3)能量代谢和高压素和高压素之间的连接(3)与Diirth rybs之间的联系之间的联系。她是高血压研究的几项研究奖项的首位亚裔美国人,包括国际哈里特·达斯坦(Harriet Dustan)的科学妇女奖以及美国心脏协会的刘易斯·K·达尔纪念演讲奖,欧内斯特·斯塔林(Ernest Starling)
摘要:全聚合物混合物的形态控制在制造高充分性有机太阳能电池方面是典型但充满挑战的。最近,已批准固体添加剂(SAS)能够调整聚合物的形态:小分子融合了设备的性能和稳定性。Herein, three perhalogenated thiophenes, which are 3,4-dibro- mo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diio- dothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothio- phene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic太阳能电池(APSC)。对于PM6和PY-IT的混合物,受益于孔素化的硫烯和聚合物之间的分子间相互作用,在引入这些SAS之后,可以对分子填料特性进行细微的调节。原位紫外线/VIS测量表明,这些SA可以帮助全聚合物混合物中的形态学演化,从而导致其最佳形态。与PM6:PY-IT的AS-cast设备相比,所有经过处理的二进制设备都显示出增强的功率连接效率,为17.4-18.3%,明显含有的短路电流密度和填充因子。据我们所知,SA-T1处理的二进制二进制排名为18.3%,迄今为止所有二进制APSC中最高。 同时,在其他全聚合物混合物中,SA-T1的通用性得到了一致改进的设备性能。 这项工作为实现高性能APSC提供了新的途径。据我们所知,SA-T1处理的二进制二进制排名为18.3%,迄今为止所有二进制APSC中最高。同时,在其他全聚合物混合物中,SA-T1的通用性得到了一致改进的设备性能。这项工作为实现高性能APSC提供了新的途径。
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。