摘要 蚯蚓堆肥是将有机化合物生物降解为有助于植物生长的营养腐殖质的传统方法。压泥是甘蔗工业的废弃物之一,具有丰富的有机成分。在本研究中,压泥与生物炭结合进行蚯蚓转化。使用 Eudrlius eugeniae 将不同浓度(0、2、4 和 6%)的压泥和牛粪以三种不同的比例(1:1、2:1 和 3:1)添加到生物炭中,以产生增强的蚯蚓堆肥。在添加生物炭的蚯蚓堆肥组合中,蚯蚓的生长和生物量都有所增加,其中添加 4% 生物炭的 C7(PM+CD(2:1)和添加 6% 生物炭的 C4(PM+CD(1:1))的蚯蚓生长和生物量均达到最大值。微生物和酶水平分析表明,添加生物炭的组合比未添加生物炭的组合效果更好。总体而言,添加 4% 生物炭的组合 C3(PM+CD(2:1)在微生物和酶分析中效果最好,在第 45 天达到最大值。添加生物炭的组合的腐殖化作用也更好,最终样品中腐殖化指数最低的分别是添加 4% 和 6% 的压泥+牛粪的 C3(0.6820±0.027)和 C4(0.6912±0.031)。这项研究表明,添加 4% 浓度的生物炭对蚯蚓堆肥的腐殖化作用优于未添加生物炭的组合。以压泥为基质的 6% 和 C3 与 C4 的组合对蚯蚓的生长和繁殖有较好的促进作用。基质的腐殖化活性在分别添加 4% 和 6% 生物炭的 C3 和 C4 组合中也达到最大值。关键词:蚯蚓堆肥、压泥、蚯蚓转化、生物炭、蚯蚓
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
抽象的天然纤维增强复合材料(NFRCS)患有吸水和低温稳定性,导致纤维降解和随后的材料衰竭。研究了内置的压电传感器,以监视组件的变形/应变。作为来自橄榄石的可再生资源生物炭颗粒的低成本材料,在亚麻层和用作模型系统的纱线束上。碳黑色样品作为宠物型变体用作参考材料。生物炭和碳黑色覆盖的纤维系统被层压在环氧树脂中,然后进行拉伸测试。在测试过程中同时记录了电阻。Biochar在纳米到高千分尺范围(d <200μm)的宽大分布在传感器性能方面表现出色,颗粒大小范围较小d <20μm。具有集成生物炭颗粒的NFRC样品的量规因子(GF)达到30 - 80,而碳黑色不能超过8。为了获得最大的GFS,亚麻纱/层的纱线计数应尽可能薄,但仍然可以渗透粘附的粒子网络。与碳黑色相比,相对较大的粒径被确定为促成高GF的促成因子。
为了理解过去十年中长江经济带的农作物稻草资源数量的时间和空间变化,以及稻草生物char的估计碳排放量的估计减少潜力,采用了稻草系数方法,用于科学估计该地区的农作物资源,从2011年到2020年。该研究分析了稻草资源密度和人均资源数量的时空分布特征。此外,它估计了从稻草制备生物炭的碳排放降低潜力。结果表明,长江经济带中的稻草总量从2011年到2020年增加了0.22×10 8T。在2020年,该地区的作物稻草资源的理论总量约为3.04×10 8 t。温室气体缓解的总体净潜力是降低了约2.18×10 8 t的CO 2E。很明显,将作物稻草转化为生物炭具有巨大的潜力,并作为实现碳排放量减少的有效手段。
摘要:在Panax Notoginseng的连续种植中,根际土壤中的致病真菌增加并感染了Panax Notoginseng的根,导致产量降低。这是一个紧迫的问题,需要解决,以有效克服与Panax Notoginseng的连续种植相关的障碍。先前的研究表明,枯草芽孢杆菌抑制了Panax Notoginseng根际中的致病真菌,但抑制作用不稳定。因此,我们希望引入生物炭,以帮助枯草芽孢杆菌在土壤中定植。在实验中,对Panax Notoginseng种植了5年的田地进行了翻新,并同时混合了生物炭。将应用的生物炭量设置为四个水平(B0,10 kg·Hm -2; b1; b1,80 kg·Hm -2; b2; b2,110 kg·hm -2; b3,140 kg·hm -hm -hm -2)和二级生物杆菌的生物学剂,将三个水平设置为三个水平(C1,10 kg)。 2; C3,25 kg·Hm -2)。使用了完整的组合实验和空白对照组(CK)。实验结果表明,整体蛋白酶在门水平下降低了0.86%〜65.68%。基本肌cota增长-73.81%〜138.47%,而Mortierellomy-Cota增加了-51.27%〜403.20%。在属水平上,Mortierella升高-10.29%〜855.44%,镰刀菌降低了35.02%〜86.79%,而Ilyonectria则增加了-93.60%〜680.62%。镰刀菌主要引起急性细菌枯萎的根腐,而伊利诺克里亚主要会导致黄色腐烂。good_coverage指数均高于0.99。在不同的治疗方法下,香农指数增加-6.77%〜62.18%,CHAO1指数增加了-12.07%〜95.77%,Simpson指数增加了-7.31%〜14.98%,ACE指数增加了-11.75%〜96.75%〜96.12%。随机森林分析的结果表明,Ilyonectria,pyrenochaeta和Xenopolyscytalum是土壤中最重要的三种最重要的物种,弯曲曲霉的值分别为2.70、2.50和2.45。fusarium排名第五,其弯曲的值为2.28。实验结果表明,B2C2治疗对镰刀菌具有最佳的抑制作用,并且在B2C2处理下,Panax Notoginseng Rothosphere土壤中镰刀菌的相对丰度降低了86.79%。 B1C2治疗对伊利诺克里亚的抑制作用最佳,而在B1C2处理下,Panax Notoginseng Rothizosphere土壤中伊甘元的相对丰度降低了93.60%。因此,如果我们想用急性摩尔斯托尼亚卵巢根腐烂改善土壤,则应使用B2C2处理来改善土壤环境;如果我们想通过黄色腐烂疾病改善土壤,我们应该使用B1C2处理来改善土壤环境。
摘要:厌氧消化(AD)用于治疗由于人口增长和全球经济的扩展而产生的市政固体废物(MSW)的不断增长的有机分数。广泛应用AD导致残留固体消化不断增加,这必然需要进一步处置。有必要提高广告效率并降低大量消化率。这项研究研究了在不同的热解温度(300℃,500℃和700℃)以及500℃下的玉米毒生物炭及其对AD性能的影响。生物炭的pH值随着热解温度的升高而增加,而电导率则降低。大孔主导了生物炭的孔径,并随着热解温度的升高而降低。生物炭制备温度显着影响了效率。在700℃制备的生物炭胜过其他组,将沼气产量提高了10.0%,有效地缩短了滞后时间,并将平均化学氧需求(COD)降解率提高了14.0%。添加生物炭(700°C)和玉米秸秆生物炭增加了挥发性脂肪酸(VFAS)氧化细菌的相对丰度,从而加快了AD系统中的酸转化率。Biochar促进了直接种间电子的电子传递,在DMER64和Trichococcus之间使用甲烷萨塔,从而增强了沼气的生产性能。这些发现证实了源自消化酸盐的生物炭促进了MSW的AD系统中的沼气产生和酸的转化。此外,生物炭具有改进的AD稳定性,这代表了回收消化酸盐的有前途的方法。
Rombola A.G.,Torri C.,Vassura I.,Venturini E.,Reggiani R.,Fabbri D.(2022)。生物炭修订对两年野外实验中农业土壤的有机物和溶解有机物组成的影响。总环境科学,812,1-11 [10.1016/j.scitotenv.2021.151422]。
摘要:由不同生物量来源产生的生物炭,例如软木(松树,云杉,冷杉)和硬木(橡木,枫木,桦木,柚木),是厌氧消化的绝佳添加剂。松树(Pinus spp。)生物炭及其多孔结构是微生物附着和改善甲烷产生的理想选择。云杉(picea spp。)Biochar以其较大的表面积认可,可增强微生物相互作用并加速气体的产生。橡木(quercus spp。)生物炭对稳定性有重大影响,并防止pH的极端波动,可能会对消化产生不利影响。枫(Acer spp。)生物炭有助于促进电子传输,以实现最佳的AD操作。fir(abies spp。)生物炭增强了养分的保留,同时支持微生物的生长,从而带来了相对稳定的消化环境。最近,还发现了生物炭对沼气产量降低和稳定沼气产量的影响,除了一般改善基于柚木的生物炭的系统性能以进行AD。关键字:厌氧消化,生物炭,甲烷产生,微生物支撑,pH稳定,缓解氨。
生物炭是一种类似木炭的物质,由木材、坚果壳、果壳或粪肥等生物质在低氧高温下燃烧而产生 (Spokas, 2020; Parikh 等人, 2020)。生物炭主要由碳组成,碳以多种黑碳化学形式存在,具体取决于原料的燃烧、冷却和/或储存方式。生物炭的使用可以追溯到数千年前,当时亚马逊盆地的土著人民生产生物炭并将其混入土壤中以提高土壤肥力和农作物产量 (Spokas, 2020)。如今,生物炭被用作土壤改良剂,用于封存碳、改善土壤健康和水分、提高土壤 pH 值和修复受污染的土壤 (Neukrich, 2022)。2018 年,美国生物炭行业估计,美国每年生产约 45,000 吨生物炭 (Groot 等人, 2018)。本方法论文件概述了边际减排成本曲线 (MACC) 的创建,该曲线模拟了美国大规模采用生物炭的温室气体减排潜力和相关成本,以及该分析的结果。
该研究旨在调查M20级混凝土使用生物炭和铁矿石尾粉(ITP)的CO 2序列能力。通过缓慢的玉米毒酸性热解制备生物炭。将所获得的生物炭分为两个系列未经处理的生物炭,并通过加热进行预处理,直到燃烧。在0%,5%,10%和15%的情况下,混凝土中的细骨料被代替。通过压碎和筛分铁矿石废物获得的铁矿石尾粉。将水泥以0%,25%和50%的重量代替ITP。水与粘合剂比保持在0.45,在超增塑剂的帮助下保持混凝土的可工程性。进行了抗压强度测试,CO 2摄取,孔隙率和汞侵入孔隙测试,以了解混凝土中生物炭和ITP的影响。测试结果表明,含有25%ITP替代的预处理的生物炭的混合物具有最大CO 2隔离能力,而不会损害其强度特性。