到2050年,全球人口预计将达到96亿,并且每年对动物蛋白的需求不断增长,在为子孙后代保存自然资源的同时,提供高质量的蛋白质是一项挑战。在这种情况下,水产养殖对于通过供应动物蛋白并促进就业和经济增长来促进健康至关重要。BioFloc技术(BFT)被认为是新的“蓝色革命”,因为它允许在培养基中连续回收和再利用营养物质,从而受益于最少或零水交换。bft是一种基于微生物的原位生产的环保水产养殖技术。BioFloc由池塘或储罐中的悬浮生长组成,包括生命和死亡颗粒有机物的聚集体,细菌的浮游植物,细菌和放牧者。此方法使用池塘或水箱中的微生物过程为培养的生物提供食物,同时充当水处理溶液。因此,该系统也被称为主动悬浮池,异营养池,甚至是绿色汤池。
摘要:BioFloc技术(BFT)是一种可持续的水产养殖方法,可促进有效的营养回收利用,最大程度地减少环境影响并提高生产力。这种方法涉及培养微生物群落,这些微生物群落将有机废物转化为生物群落,这些群体可以作为鱼类和虾等栽培物种的营养来源。本综述提供了对BioFloc技术的深入研究,涵盖其原理,应用,优势和挑战,以及其在可持续水产养殖中的有希望的作用。通过分析最近的研究,我们评估了BFT系统对各种水生物种的生存能力及其在降低饲料成本和水污染方面的潜力。
水产养殖是增加渔业生产的替代活动之一。虾是出口数量最多的商品,即2.3928亿公斤。培养的生物群生长的关键是喂养营养以增加公司利润。这项研究的目的是确定营养公式是否可以降低饲料的饲料成本,并能够加速要培养的生物群体的生长,并确定使用营养配方进行培养的利润比较结果,而不是使用营养公式。本研究通过观察和访谈和业务可行性分析应用描述性方法方法,包括收入,TR(总收入),BEP(中断事件点),PBP(投资回收期)和FRR(财务回报率)。这项研究的结果表明,在生物群体系统中提供养分饮食虾养殖可以最大程度地提高耕种的好处,BEP和PBP的速度也更快,而银行的利率也更快。
预计到 2050 年,世界人口将达到 96 亿,在满足日益增长的优质蛋白质需求的同时为子孙后代保护自然资源,面临着巨大挑战。渔业可以通过提供动物蛋白、创造就业机会和促进经济增长,在应对这一挑战中发挥关键作用。生物絮凝技术 (BFT) 代表一种高度先进的水产养殖方法,其中营养物质在养殖系统中不断循环和再利用,从而最大限度地减少或消除了水交换的需要。BFT 是一种生态友好型方法,通过控制水中的碳和氮来利用原位微生物蛋白质生产。生物絮凝是指水中的悬浮生长物,由活的和死的颗粒有机物、浮游植物、细菌、原生动物和细菌的食草动物组成。它既是养殖生物的食物资源,也是一种水处理解决方案。该系统又称为活性悬浮池、异养池或绿汤池。生物絮凝池的科学建造是生物絮凝养鱼系统絮体和鱼的产量和生产力的重要决定因素。因此,在实施生物絮凝养鱼时,应特别注意生物絮凝池的科学建造。
背景在越南,土地稀缺问题日益严重,主要原因是人口快速增长和人均经济增长加快。这导致土地消耗增加,特别是用于粮食和能源生产,并带来诸如森林砍伐、生物多样性丧失和天然二氧化碳吸收减少等负面影响。这些问题要求重新考虑土地使用。为实现《巴黎协定》的气候目标,越南越来越关注可再生能源,特别是光伏系统。这是必要的,因为该国面临着每年约 10% 的电力需求增长。推广可再生能源是解决越南土地使用冲突和气候变化的关键方面。缓解土地资源压力的一种策略是将其用于粮食和能源生产的用途增加一倍。在同一区域结合水产养殖生产和光伏能源生产(Aqua-PV)是非常新的发展;据我们所知,在该项目开始时,没有其他用于养虾的 Aqua-PV 项目(图 1)。在养虾业中,所谓的生物絮团系统得到越来越多地应用,其中依赖光的藻类和微生物在水质和虾的营养中发挥着重要作用(图 2)。因此,了解光伏系统遮光对生物絮团系统的影响至关重要。SHRIMPS 项目旨在帮助减少越南未来水产养殖和光伏地面安装系统的土地需求。同时,它旨在提高土地面积的整体生产力。这样,越南的土地使用和经济增长就可以在生态和社会经济上更加可持续地发展。在由 Thünen 渔业生态研究所开展的子项目中,我们研究了光伏系统遮光虾池对池塘生物系统和虾生产的影响。
完整分数75 3学分43小时单元1鱼类生物学的基础知识3可耕种鱼类,土著和异国情调的质量2可持续水产养殖系统15可持续水产养殖培养系统:广泛的,半密集的,广泛的水质在培养池和控制水质的培养池和因素中。在复合鱼类培养文化,笔文化,跑道中的鱼类培养池的准备和管理。流过系统。BioFloc。冷水渔业。耶尔渔业。污水喂养渔业。马里养殖,特别着重于海杂草文化。(基本概念)诱导的碳繁殖。合成激素在降压中。鳍鱼类孵化场的管理。玻璃罐孵化场,中国孵化场。
确保足够数量的高质量幼虫的可用性仍然是水产养殖阶段的重要瓶颈。在过去的一个世纪中,已经探索了各种幼虫阶段的替代饮食解决方案,包括细菌,微藻糊,酵母和各种惰性微粒,尽管结果不一致。本综述旨在讨论益生菌在微循环中的创新整合,突出显示封装,涂料和发酵技术以推动水产养殖生产率。微法经常富含营养且易于以粉状或液体形式吸收,在幼虫鱼营养中起着至关重要的作用。可以将这些分类为微封装,干燥,液体和活饲料。微鳍的选择是关键,可确保针对每个幼虫阶段量身定制的吸引力,消化率和水稳定性。由于益生菌在水产养殖中的潜力增强,增强疾病耐药性和提高水质的潜力,其给药方法已经多样化。益生菌可以通过直接浸入和浴处理对生物氟氟氯洛克系统和饲料添加剂进行管理。结果表明,与益生菌合并的微局面对水产养殖业有积极的影响。
图1全尺度实验设计,以识别微生物教育的有益细菌。为了长期有益效果,建议在幼虫阶段进行微生物教育(A部分,绿色)。在幼虫饲养过程中要添加到海水中的微生物可以通过(1)由无病原体的无病原体供体牡蛎引入,这些牡蛎总是使用紫外线处理的海水保存在受控设施中,严格的生物安全性扎环和管理程序,或(2)通过仔细添加了基于培养的多型细菌细菌混合物,或(2)。必须优化混合物及其组成的方法,以最大程度地吸收幼虫的吸收(浸入或以冷冻干燥的形式,延迟或同时与饲喂生物群体形式延迟或同时)。曝光窗口(从胚胎发生到幼虫阶段),必须调整暴露于细菌鸡尾酒的持续时间。饲养条件是应测试的其他参数(温度,连续流或批处理系统)。多应变细菌混合物(B部分,橙色)的定义是更好地预测有益特性的必要上游步骤。首先,必须创建一个可耕种的细菌库。这些细菌将优先与宿主分离。抗病机构的动物(如果益生菌旨在提高对特定传染病的抗药性)必须从几个地理部位和不同季节收集,以最大程度地提高细菌多样性。这样获得的细菌将被培养,纯化和冷冻保存。可以测试几种用于细菌培养的物理化学参数(培养基,温度),以增加细菌文库中的潜在生物多样性。通过16S rRNA编码基因的Sanger测序来鉴定收集的每个培养菌株。并行,必须在计算机预测分析中进行预测,以预测哪种细菌通常与宿主中的耐药表型相关(如果益生菌旨在提高对特定传染病的抗性)。这项相关研究将有必要将几个(元)条形码分析先前是在从抗性和敏感动物到指定疾病的微生物群上产生的。这些相关分析,再加上对科学文献的详尽研究,应该使可以从收集中预测可能是有益的益生菌候选者的细菌。然后,必须测试微生物暴露的有益作用(C部分,灰色)。短期效应将在幼虫阶段进行测试。应特别注意多晶体细菌混合物对幼虫的生存和生理学的影响,以测试暴露是有害,有益还是对幼虫发育和生长特性是有害的,有益的还是中性的。用于分子分析的抽样(即转录组,条形码,代谢,表观基因组分析)可能值得对微生物效应的分子基础解密。最后,将在随后的生命周期阶段测试长期有益作用:少年和成年人将受到病原体的挑战。